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Micromechanical Models for the Brownian Motion of Hair Cell Stereocilia
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Brownian motion of the hairs (stereocilia) of amphibian hair cells has been shown in experiments to
be in the range of some nm. Our models of the Brownian motion of coupled harmonic oscillators with
mechanical properties of stereocilia lead to similar displacements. Computer simulation shows that
stochastic fluctuations enhance the encoding of low level acoustic signals. Stochastic resonance lowers
the detection threshold of auditory signals to amplitudes one order of magnitude lower than that of
the Brownian motion.
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Introduction

The stochastic contribution by thermal motion to
movements of the elastic structures in the inner ear
essentially depends on their masses: at the basilar
membrane, the thermal influence is negligible, at the
tiny hairs (stereocilia) of the receptor cells it is
relatively large, i.e. in the range of 2 nm. At the
threshold of hearing, acoustic stimuli cause vibrations
of the stereocilia in the order of some hundreds of
picometers (Hudspeth, 1989), this means that at the
receptor cell the influence of thermal noise is 10 times
higher than that of the acoustic signal.

The fact that thermal motion is not audible was the
basis for controversies about the actual vibration
amplitudes at the threshold of hearing (e.g. de Vries,
1948). Harris (1967) proposed the hypothesis that the
stereocilia of every auditory receptor cell have to be
strongly coupled to reduce the amplitude of their
Brownian motion. Years later, electron microscopy
revealed two types of connections between the
stereocilia: tip links and lateral links, which act as

springs and keep the hairs together (Flock et al., 1977;
Pickles et al., 1984).

Spontaneous activity in single nerve fibers was
measured to be up to 140 spikes/s and is present in
the absence of any acoustic stimulation (Relkin &
Doucet, 1991). Note that this spontaneous spiking
does not lead to any sensory perception which reflects
the ability of the brain to suppress noise. In this article
we show that Brownian motion contributes to the
spontaneous activities of auditory nerve fibers.

Hair cells in sensory systems detect fluid motions,
in the lateral line organ in fish as well as in the
vestibular and in the hearing organ. The stereocilia of
a typical mammalian auditory inner hair cell are
arranged in three rows of increasing height, with 20
stereocilia in each row (for physiological details see
Fig. 1). There is a variability in the number and the
arrangement of stereocilia per hair cell, e.g. in the
apex of the guinea pig cochlea some outer hair cells
have less than three rows of stereocilia.

Mechanical Model of Stereocilia Motion

A single stereocilium is modeled as a stiff rod with
two degrees of freedom, which is ball jointed to the
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F. 1. Scheme of an inner hair cell. Endolymphatic fluid
motions caused by the movement of the hearing ossicles induce
displacements of the hairs (stereocilia) of the auditory receptor cell.
The stereocilia of one inner hair cell are interconnected by links
(elastic protein filaments). The open–close kinetics of the
transduction channels located close to the top of each stereocilium
depend on stereociliary deflection. Even in the resting state the
transduction channel open probability is about 15%. Due to
potential gradients, ion currents (mainly potassium) enter the cell
through the transduction channels and leave through ion channels
in the cell body membrane, causing a resting potential of about
−40 mV in the unstimulated hair cell and potential changes of
some mV following stereociliary displacements. A potential change
as low as 0.1 mV may cause neurotransmitter release and thereby
a spike in one of the connecting auditory nerve fibers. Note the
tapering of the stereocilia bottom endings. In humans the inner hair
cell stereocilia are arranged in a 20×3 matrix with 20 short, 20
middle and 20 long elements; each stereocilium behaves like a rigid
rod pivoting around its insertion to the cuticular plate.

solving the following uncoupled Langevin equations
of motion:

ẍ+ bẋ+v2
0x=X(t), ÿ+ bẏ+v2

0y=Y(t) (1)

where x and y are the displacements of the stereocilia
tips, b is the damping constant, v0 in eqn (1)
denotes the undamped angular eigenfrequency. Note
that v0 =z3C/m, where C, the stiffness of a stereo-
cilium, is measured as the ratio between an external
horizontal force applied to the tip of the stereocilium
and the resulting horizontal tip displacement. X(t)
and Y(t) are the accelerations due to the stochastic
driving forces (thermal motions of the cochlear fluids)
and correspond to a white noise. It is characterized by
the spectral density 2kT/m ·b with the Boltzmann
constant k, the absolute temperature T and the mass
m of the stereocilium. For computational reasons we
modeled the effect of the white noise as a random
acceleration which is constant during one integration
step Dt. The standard deviation of the random
acceleration is

X 2kT
m ·Dt

· b.

    

 

We consider the Brownian motion of a subsystem
of the hair bundle of an inner hair cell (IHC) in the
physiologically relevant x-coordinate. Only displace-
ments along the x-axis influence the open–close
kinetics of the mechano-sensitive transduction chan-
nels: displacement to the lateral side increases their
open probability, displacement to the medial side
results in a decrease of the open probability.
According to the mechanical scheme shown in Fig. 2,
this subsystem consists of three elastically coupled
stereocilia with increasing lengths. The resulting
coupled Langevin equations of motion are:

ẍ1 + b1xt 1 +v2
0,1x1 −

3Kl2
m1l1 0x2 −

l2
l1

x1 + l01=X1(t)

(2a)

ẍ2 + b2xt 2 +v2
0,2x2 +

3K
m2 0x2 −

l2
l1

+ l01
−

3Kl3
m2l2 0x3 −

l3
l2

x2 + l01=X2(t) (2b)

ẍ3 + b3xt 3 +v2
0,3x3 +

3K
m3 0x3 −

l3
l2

x2 + l01=X3(t)

(2c)

cuticular plate at the apical end of the cell body.
Therefore the moment of inertia is I=ml2/3, where m
and l denote stereocilia mass and length. The
movement of the tips of the stereocilia can be
regarded as a two-dimensional problem, since in the
normal range of operation the displacements are
about 0.01 of stereocilia length, and result from
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F. 2. Equivalent mechanical system of three stereocilia of
increasing height. The tip links, connections between the rigid rods
representing the stereocilia, are modeled as springs.

densities for the displacements of the long and middle
stereocilia at higher frequencies (Fig. 3). The high
frequency contributions are most relevant for the
movement of the short stereocilia. Denk et al. (1989)
report spectral densities of similar shape for the dis-
placements due to Brownian motion of the stereocilia
bundle of amphibian hair cells. The influence of the
two shorter stereocilia on the Brownian motion of the
long stereocilium is in spite of the very small stiffness
and pre-tension of the elastic coupling in the range of
a few per cent.

        



There are several connections of a single stereocil-
ium to its neighbors and the forces exerted by those
lateral and tip links operate at different height. A
detailed three-dimensional model would represent
each of them as a spring. A simplified version of the
complex situation is shown in Fig. 4. This system can
be simplified by incorporating the effects of the
second and third rows of stereocilia by introducing
transversal forces between the adjacent masses in the
first row stereocilia. The reduced system is shown by
the solid lines in Fig. 4. Therefore the Brownian
motion of the complete human IHC hair bundle can
be modeled with reduced effort: instead of 60
stereocilia in three rows, a linear chain of 20
elastically coupled (averaged stiffness K) two-
dimensional harmonic oscillators with increased
stiffness C to compensate for the neglected elements
is used.

Each of these harmonic oscillators represents three
elastically coupled stereocilia with increasing lengths:
the influence of the two rows of shorter stereocilia is
included as a strengthened elastic coupling of the
single oscillator to its resting state.

where K denotes the stiffness of the coupling springs,
l0 the tip link length without tension and l1, l2, l3 are
the stereocilia lengths.

For the parameters given in Table 1, the
root-mean-square displacements of the short (1 mm),
the middle (1.6 mm) and the long (4 mm) stereocilia are
1.4, 1.8 and 4.2 nm, respectively. A 1 ms portion of
the time evolution of the displacements and
corresponding spectral densities are presented in
Fig. 3. The amplitude of the spectral density (right
traces in Fig. 3) is proportional to the square of the
stereocilia length. Note the decrease of the spectral

T 1
Parameters used for modeling the three elastically coupled stereocilia with increasing

lengths
Damping constants of the long, the middle and the short stereocilia b1 =6.0·106 s−1

(Bialek & Schweitzer, 1987) b2 =2.4·106 s−1

b3 =1.5·106 s−1

Length of tip link without tension (guinea pig, Zetes, 1995) l0 =20 nm
Lengths of the long, the middle and the short stereocilia (guinea pig, l1 =4.0 mm

Zetes, 1995) l2 =1.6 mm
l3 =1.0 mm

Masses of the long, the middle and the short stereocilia (Bialek m1 =2.2·10−16 kg
& Schweitzer, 1987; guinea pig, Zetes, 1995) m2 =8.0·10−17 kg

m3 =5.0·10−17 kg
Stiffness of the tip links (guinea pig, Zetes, 1995) K=5.0·10−4 Nm−1

Undamped angular eigenfrequencies of the long, the middle and the v2
0,1 =8.3·1011 s−2

short stereocilia (Bialek & Schweitzer, 1987; guinea pig, Steele & Jen, 1988) v2
0,2 =4.9·1012 s−2

v2
0,3 =1.3·1013 s−2
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F. 3. Simulated time series (left) and spectral densities (right) of the displacements of the long, medium and short stereocilia (top, middle
and bottom traces, respectively). Spectral densities were obtained from 16 000 data points; the arrow indicates the knee frequency. The
spectral density of the long stereocilium is fitted with a Lorentzian

2Av

p ·(v2+4(f− fc)2)
with A=23.3 Hz, v=18 700 Hz, fc =3907 Hz.

The Langevin equations of motion for the inner
elements of the chain are

ẍi + bixt i +v2
0xi −(ax,i − ax,i−1)=Xi(t),

ÿi + biyt i +v2
0yi −(ay,j − ay,i−1)=Yi(t) (3a)

with i=2,. . ., 19.
The Langevin equations of motion for the top and

bottom ends of the chain are

ẍ1 + b1xt 1 +v2
0x1 − ax,1 =X1(t),

ÿ1 + b1yt 1 +v2
0y1 − ay,1 =Y1(t) (3b)

ẍ20 + b20xt 20 +v2
0x20 + ax,19 =X20(t),

ÿ20 + b20ẏ20 +v2
0y20 + ay,19 =Y20(t). (3c)

The accelerations due to the elastic coupling are

ax,i =V2
0(z(xi+1 − xi)2 + (yi+1 − yi + d0)2 − ld0)

×
xi+1 − xi

z(xi+1 − xi)2 + (yi+1 − yi + d0)2
(4)

and

ay,i =V2
0(z(xi+1 − xi)2 + (yi+1 − yi + d0)2 − ld0)

×
yi+1 − yi + d0

z(xi+1 − xi)2 + (yi+1 − yi + d0)2
(5)

with V2
0 =3K/m and d0 the initial distance between the

masses (50 nm). The parameter that regulates the
pre-tension of the coupling springs between two
adjacent masses is l (0Q lQ 1), without pre-tension
l=1. For additional transversal elastic coupling
attractive forces appear in the x-direction, which are
in the presented model proportional to the difference
of the x-coordinates of neighboring masses: in this
case, the term aTr

x,i =V2
Tr(xi+1 − xi) has to be added to

the acceleration ax,i (see Fig. 4). The values of the
parameters used for modeling are given in Table 2.

In the following we present three case studies in
order to show some synchronizing effects of the
displacements of the single elements of the chain,
caused by the pre-tension of the coupling springs
which connect the masses in the y-direction. In the
simplest case the masses are connected via springs
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F. 4. Top view of the linear chain as a model of the stereociliary
bundle (simplified). The solid lines represent the reduced system,
the gray elements complete the 3×20 structure of the hair bundle.
The resting states of the masses mi are in the origins of the
respective coordinate systems, the initial distance between the
masses is d0. C denotes the stiffness and K the spring constant of
longitudinal coupling.

elements 11–20 is smaller than the estimated error
[Fig. 5(b)]. The linear chain of oscillators is a
simplified model of the stereociliary bundle which
consists of three parallelly coupled chains. The real
structure of the coupling elements within the
stereociliary bundle is not yet completely known, the
effect of possible inner coupling is modeled in case 3
as additional longitudinal stiffness (transversal elastic
coupling of the oscillators: aTr

x,i =V2
Tr(xi+1 − xi), with

V2
Tr =70V2

0). Because of the additional coupling the
mean displacement is smaller than in the two previous
cases and the correlation is larger. Note that in this
case the transversal coupling was chosen to be about
eight times stronger than the longitudinal one, to
clearly illustrate the effects.

The Mechano-electrical Transduction at the Threshold
of Hearing

A reduced model for the mechano-electrical
transduction in inner hair cells (Rattay et al., 1998a)
is used to show the amplifying influence of the
Brownian motion on the threshold of the detection of
auditory signals. The potential fluctuations within the
hair cell are modeled using equivalent electric circuits
for cell membrane and cytoplasm (RC-components
and batteries), the kinetics of the transduction
channels are modeled as Markov processes with a
linear relation between the stereociliary displacement
and the open probability in the region of displace-
ments of a few mn. The inner hair cell membrane time
constant is t=0.255 ms, therefore the inner hair cell
potential is a low-pass filtered picture of the
stereociliary displacements with additional noise
because of the stochastic components in channel
gating (Fig. 6).

In sensitive release zones of the hair cells a potential
change exceeding 0.1 mV above the resting potential
is enough to trigger neurotransmitter release and thus

without pre-tension (l=1). According to Hook’s
law, the back-driving forces are proportional to the
displacement. The mean transversal displacements of
the coupled oscillators are nearly constant along the
chain, since the elastic potential is mainly determined
by the coupling of each oscillator to the resting state
[Fig. 5(a), upper trace], and close to the displacements
of single oscillators without any longitudinal coupling
(data not shown). The correlation of the Brownian
motion within the chain is below statistical fluctu-
ations. In the case with pre-tension (l=0.2), the
longitudinally coupled springs cause a linear transver-
sal coupling, i.e. a spring force which is proportional
to the transversal component of the distance to
neighboring oscillators. The correlation of the
movements is stronger compared with the l=1 case
and theoretically does not vanish along the whole
chain. Because of the finite number of elements in the
ensemble the correlation of the first element to the

T 2
Parameters used for the linear chain as a model for the stereociliary bundle

Damping constant (Bialek & Schweitzer, 1987) b=6.0·106 s−1

Initial distance between the masses (guinea pig, Zetes, 1995) d0 =50 nm
Length of stereocilium (guinea pig, Zetes, 1995) l=4.0 mm
Longitudinal coupling constant (Bialek & Schweitzer, 1987; guinea pig, V2

0 =2.0·1012 s−2

Zetes, 1995)
Mass (Bialek & Schweitzer, 1987; guinea pig, Zetes, 1995) m=2.2·10−16 kg
Parameter regulating the pre-tension of the coupling springs 0 Q lE 1
Spring constant of longitudinal coupling (guinea pig, Zetes, 1995) K=5.0·10−4 Nm−1

Stiffness (guinea pig, Zetes, 1995) C=2.2·10−4 Nm−1

Transversal elastic coupling constant (Bialek & Schweitzer, 1987; V2
Tr = 1.4·1014 s−2

guinea pig, Zetes, 1995)
Undamped angular eigenfrequency (Bialek & Schweitzer, 1987; guinea pig, Steele v2

0 =8.3·1011 s−2

& Jen, 1988); effective angular frequency v2
0 =9.9·1011 s−2
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F. 5. Influence of pre-tension and transversal coupling on the 20 elements of the linear chain model: (a) r.m.s. displacement; (b)
correlation of the displacement of the first oscillator with that of the other elements of the chain.

an action potential can be generated in the auditory
nerve (Hudspeth, 1989). Figure 7 demonstrates that
the voltage fluctuations due to a weak signal alone
would rarely reach threshold, however additional
fluctuations caused by Brownian motion help to
generate spikes. The spiking rate caused by a very
weak signal does not exceed the spontaneous rate but

the nerve impulses become, with increasing signal
strength, more and more phase-locked to the maxima
of the acoustic input, i.e. with increasing signal-to-
noise ratio the spiking pattern becomes more regular.

F. 7. Simulation receptor potential changes and resulting firing
behavior. The voltage evoked by the weak sinusoidal signal alone
(thin line, hypothetical case without Brownian motion) is
fluctuating because of transduction channel kinetics. Only in one
case (marked by dashed arrow at 13.5 ms) those fluctuations are
large enough to reach the threshold of spiking at 0.1 mV. The
compound fluctuations caused by sinusoidal tone plus noise with
a signal-to-noise ratio of 1/10 produce seven spikes within 20 ms
that are distributed to connecting auditory nerve fibers. The
recovery behavior after spiking is modeled by an exponential decay
of the threshold curve: as soon as the voltage fluctuations cross the
threshold curve again, a new spike can occur.

F. 6. Mechanical and electrical fluctuations due to Brownian
motion: the intracellular receptor potential changes are a low-pass
filtered picture of stereociliary displacements with an additional
portion of noise resulting from the transduction channel kinetics.
The time constant (t=0.255 ms) is calculated from the exponential
voltage time course following a stimulus that immediately opens all
of the transduction channels (Rattay et al., 1998a).
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F. 8. Simulated interspike time interval histograms of the
spiking activities in a single auditory nerve fiber for different
signal-to-noise ratios (snr). (a) Spontaneous activity caused by the
Brownian motion alone. The distribution is Poisson-like since the
signal-to-noise ratio is 0, and is shifted by the smallest interspike
time 0.8 ms—which is equal to the absolute refractory period of
auditory nerve fibers. Increase of the signal-to-noise ratio results in
the tendency that the histogram maxima coincide with multiples of
the 2 ms period of the 500 Hz signal. The periodicity information
is weakly represented in (b) where snr=0.1, and can clearly be seen
in the snr=0.6 case (c). Simulation with the linear chain as a model
for the stereocilia bundle with l=0.2 results in a noise amplitude
of 2.2 nm r.m.s. Signal data: frequency 500 Hz, duration 3 s,
amplitude 0, 0.22 and 1.32 nm; binwidth 0.2 ms.

sinusoidal signals of low intensity. In this study the
influence of the Brownian motion and the modifi-
cation caused by the transformation of the mechan-
ical to the electrical signal was substituted by low-pass
filtering a combined 500 Hz sinusoidal and white
noise signal. This signal was used as input to produce
a firing pattern in the way as described in Fig. 7 in
order to generate a series of interspike times. After
being trained with a set of such firing patterns, a
neural net was used to classify new auditory nerve
patterns. From the time structure in a single fiber it
needs about 2 s (=200 interspike times in a fiber with
a spontaneous rate of 100 spikes/s) to detect a signal
that has an amplitude which is 10 times smaller than
that of the noise. This result is equivalent to 20 ms
signal duration, if one considers the spikes of 100
fibers coming from the same tonotopic region of
the cochlea. Details of these investigations are
reported in Gebeshuber et al. (1998b) and Rattay et
al. (1998b).

The voltage fluctuations due to the Brownian
motion are calculated for a standard IHC. A recent
modeling study shows that this standard IHC is most
sensitive for stimulation with 2 kHz (Gebeshuber et
al., 1998a). Experimental investigations of the
differences in the patterns of Brownian motion in
IHCs from different locations along the cochlea are
in preparation.

Discussion

An important result of our model of the Brownian
motion of inner hair cell stereocilia is the root-mean-
square displacement of 2 nm. A value of 3.5 nm was
measured for the stereociliary bundle in the bull frog
sacculus hair cell (Denk et al., 1989). An estimation
of the root-mean-square amplitude can be made via
the equipartition theorem and leads for the measured
hair bundle stiffnes of 10−3 N/m (Howard &
Ashmore, 1986) to a root-mean-square displacement
of 2 nm (Hudspeth, 1989). The 2 nm r.m.s. value for
the IHC stereociliary displacements is indeed a
consequence of our model. In his approximation of
the amphibian hair bundle r.m.s. displacement with
the equipartition theorem, Hudspeth used the stiffness
of the whole bundle. We use the stiffness of single
mammalian stereocilia which yields a r.m.s. displace-
ment of a single stereocilium of about 4.4 nm.
Because of the connections between the stereocilia
and their pre-tension the modeled r.m.s. displacement
results in 2 nm.

The parameters that describe the mechanical
properties of the stereociliary bundle vary because of
experimental difficulties. Therefore it is necessary to

This gradual effect is obvious from the interspike time
histograms shown in Fig. 8 for signal-to-noise ratios
of 0 (no signal at all), 0.1 (weak signal) and 0.6
(stronger signal, but still less amplitude than the
noise), respectively.

We have analysed the information that is included
in the time structure of simulated firing patterns of
auditory nerve fibers that are stimulated with pure
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investigate the influence of parameter variations on
the model of the Brownian motion of the stereociliary
bundle. According to the equipartition theorem a
smaller stiffness of the stereocilia would result in a
larger mean displacement; however since the mean
displacement is proportional to the square root of the
spring constant, relatively large parameter variations
result in rather small changes in the mean
displacements. Decrease of the stiffness of the single
stereocilia and constant coupling strength result in
stronger correlation on the movements, since the
relative influence of the elastic coupling of the
stereocilia of the movement of the chain is reduced.
Change in the damping constant b does not influence
the mean displacement at all, but for the correlation
of the displacements it is important that all inner
degrees of freedom are overcritically damped, as
assumed in our model. On the other hand a drastically
reduced damping constant causes resonances in
the system and a change in the correlation along the
chain.

We have shown that besides the Brownian motion
the stochastic components of transduction channel
kinetics are responsible for the receptor potential
changes and thereby for the spontaneous firing in the
auditory nerve fibers. Other stochastic components
which influence the spiking pattern are the variation
in neurotransmitter availability and the distribution
to the release zones, but investigations on the
influence of these components are out of the scope of
this model.

The main result of this investigation is that the
threshold of auditory perception is not limited by
the Brownian motion but in fact the noise supports
the detection of weak signals by the mechanisms of
stochastic resonance.
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