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Introduction

Stochastic resonance in biological systems

The aim of the conference was an updated overview and a critical discussion of the role and the meaning
of stochastic resonance (SR) in biological systems. Accordingly, the groups involved in SR and biology
were invited. Most of the participants belonged to the SR community, but several were biophysicists who
work on biological systems using mathematical and physical approaches. These two components made the
conference more interesting and the discussion richer and livelier.

The main issues considered in the conference concerned the detection and encoding of signals in neural
cells and the use of neural models to approach this problem. Transmission and amplification in living
organisms occurs by enzymatic cascades or by taking advantage of the energy stored in the electrochemical
gradient through the cell membrane. The latter case occurs at the molecular level (ion channel transduction)
and at the macroscopic level when action potentials fire. SR can occur in either case, and ion channels and
action potential models were the topics most considered in the conference.

SR is a simple phenomenon, initially studied in bistable systems under the action of internal noise, that
causes transitions, and of a external periodic perturbation, that synchronizes them. SR is not limited,
however, to bistable systems. Each time a noisy below-threshold signal crosses threshold, SR is obvious:
too little noise results in few crossings, and too much noise results in loss of the signal. More generally SR
occurs when the probability of stochastic events is affected by the signal (e.g. ion channel switching or, in
some conditions, action potential firing are events whose probability depends on the stimulus). The first
paper connecting SR with neural spiking was published in 1993 [1]; it was based on the reconsideration of
interspike interval histograms in auditory fibers, known since 1967 [2]. The similarity of the multimodal
experimental histograms with those produced in bistable systems was the key to interpret the generation of
spikes in auditory fibers as due to a stochastic process (or equivalent to it).

There was a strong focus on the auditory system in this conference. The mechano-electrical transduction
in the cochlea is a case of high sensitivity and does not involve enzymatic amplification; moreover, auditory
fibers require stochastic encoding because they are unable to fire at high frequency. Therefore auditory
fibers are a candidate in which SR can play a physiological role, for instance, by matching the threshold for
firing with the actual value of noise. Encoding signals in spike trains involves several sources of noise: (1)
ion channels in the hair bundle open mechanically by the relative movement of long, medium, and short
hairs; (2) Brownian motion of the hair bundle contributes to the openings of ion channels; (3) the stochastic
release of the transmitter is voltage-controlled. The latter depends not only on ion channels in the hairs but
also on the ion channels in the cell body.

A simulation of these processes indicates that the threshold for hearing is just at the value that maximizes
transmission with the noise due to three processes listed above [3]. Results of experiments in which a noisy
signal affects the movements of the hair bundle, simulating their Brownian motion, were reported [4]. They
showed an increase in the signal transmitted to the generator potential increasing the noise in the movement
imposed to the hair bundle. However this occurs 1 or 2 orders of magnitude above the threshold for
hearing. An interesting observation for stochastic phase locking in this system comes from cochlear im-
plants. Cochlear implants directly stimulate nerve fibers completely destroying or ignoring tonotopic or-
ganization. The nervous system is plastic, and, if information arrives this restores perception. Particular
tricks in cochlear implants tend to introduce a difference in the firing pattern among various fibers (e.g.,
restoring stochastic phase locking), improving hearing in persons using such implants [5,6].

Many talks dealt with neural models with different levels of complexity. These ranged for Hodgkin—
Huxley equations and FitzHugh—-Nagumo models to operational models of integrate-and-fire systems
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[7-10]. Although these models have less flexibility than real neurons, there are cases in which such “‘toy-
models” are stimulating. One example is the solution of the first-passage time for leaky integrator [11]. This
equation coincides with the Langevin equation of a free Brownian particle in an oscillating field in presence
of an absorbing barrier. Particular emphasis in the conference as well as in recent papers has been put on
the search for a measure of the influence of the stimulus on the output [12-14]. This measure has to be
equivalent to the signal-to-noise ratio (SNR) in simpler cases, but the concept is valid for more general
stimuli than periodic perturbations.

An alternate approach is the attempt to use information theory on spike trains [15]. An interesting
observation is the dependence of the probability of errors, even in a simple voltage-to-frequency converter,
on the value of the input signal [16]. This poses obstacles towards straightforward application of infor-
mation theory to neural encoding.

An effect reported both in experimental work and neural models in the below-threshold regime is the
dependence of tuning curves for receptors on noise level. Increasing the noise results in an opening of the
tuning curves (decreasing selectivity). This was found in experimental data (in mechanoreceptors as well as
in thermo- and electro-sensory receptors) [17], and in stimulations of neural models [10] and of auditory
transduction [3].

A session of the conference concerned arrays of interacting stochastic elements [18,19] searching for the
best organization (in terms of strength of interaction and noise, which appear to play more or less an
equivalent role). The idea was not to improve the SNR above usual expectations but rather to find pa-
rameters that allow synchronization of the array to obtain a reasonable spatial image. Specific effects due to
the memory in arrays of neuron-like units were also considered.

Another theme in the conference was centered on SR and statistics. The connection between stochastic
switching of ion channels and spectral properties of the transmitted signal was evaluated and the depen-
dence of the transmission on rate constants was discussed. Improvement of transmission occurs by in-
creasing the spontaneous rate of the stochastic events or strengthening the link between rate constants and
external forcing, because this improves the statistics by increasing the number of events. The initial work
[20] on this assumed an exponential dependence of the rate constants on the voltage, analogous to a barrier
separating two states. During the conference it became clear that any nonlinear dependence could produce
an SR effect. This result can be interpreted as follows: SR is not physical, but rather a statistical effect. If SR
is merely an improvement of statistics, this rules out interpretation such as “the energy flow from the in-
ternal noise to the output signal cause SR, as often used in the literature.

This brings into focus another issue that concerns SNR. Initially, the existence of a maximum in the
output SNR induced the expectation that SR was a tool to override linear devices in separating signal and
noise. The expectation was false for basic reasons, as confirmed analytically [15,21,22]. Nevertheless, the
idea that SR is a tool for detecting small signals persisted; however, one needs to define “small” in this
context. If small indicates a “below-threshold signal” for a given stochastic detector, SR can indeed detect
small signals. If, on the other hand, small means ‘“‘smaller than the noise present in the signal”, SR cannot
make detection possible [23].

Thus SR does not account for the high sensitivity of living systems to very weak stimuli, in agreement
with the discussion in Ref. [24]. This result is actually more general, because nonlinear systems cannot
override linear systems to detect small signals hidden in a large noise. In technical terms, we may say that
Linear Response Theory (LTR) applies. An analytical approach has given in each case (bistable systems,
threshold comparators, modulation of rate constants) expressions for SNR at the output [15,21,22]. These
show that noisy transmission deteriorates the output signal compared to the input. LTR and the expres-
sions for Poisson-modulated random events show, however, that the noise introduced can be relatively low
for certain parameters [20].

SNR gain can be achieved in a different context [25], namely small noise and large signal; however signal-
to-noise gain in the nonlinear response limit has nothing to do with the detection of signals contaminated
by a large noise.

Several biological systems show remarkable sensitivity to electrical fields, which are weak compared to
their thermal noise. Major topics of the conference were the interaction of ion channel kinetics and calcium
oscillations in stochastic cellular systems [26] and the reaction of sharks to electric fields [27-29] (1-2 nV/cm),
which represented an interesting platform to discuss both SNR evaluation and undue expectations
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towards SR [30]. The overview of experimental results on physics and physiology of electro-reception given
by Ad. Kalmijn during the conference was extremely stimulating, giving a connection between the sensi-
tivity in electro-reception and the way sensory epithelium works: the specificity of sensory epithelium in-
cludes how ion channels depend on membrane potential (excitability). A method to measure the
dependence of rate constants on membrane potential during a continuously time-varying stimulation is
described in Ref. [31].

The common source of both the signal and the noise in nerve cells is well understood [32] and this topic
often recurred during the discussions at the conference. Excitability emerges from the superposition of
random events (conformational changes of ion channels) that are coupled through voltage. This is anal-
ogous to the way thermodynamic laws arise from the underlying thermal motion molecules. The properties
of ion channels are, however, very specific and the nonlinear behavior of channels is the basis for membrane
excitability. The superposition of random events produces potential fluctuations, which might be large
enough to develop into action potentials. Considering this mechanism enables us to predict the density of
channels and the dimensions of cells (capacitance) in which excitability can take place. This means that
“threshold” and “noise” are inevitably connected and that there is no deterministic threshold below which
excitability does not exist. A common process that encodes the input stimulus through small underlying
events, as it is for example the case in chemical synapses, introduces a link between noise and signal (for
instance in the generator potential). This substantially reduces the freedom in simulations aiming to re-
produce the behavior of neurons or neural tissue.

The perspective emerging from many talks was to study SR, and to understand other stochastic phe-
nomena, one must know how specific information is encoded in natural systems. This is usually unknown,
making it difficult to analyze fluctuations and tempting to exaggerate the power of SR to extract infor-
mation. The conference highlighted such concerns with possible outcome that future work on SR in bio-
logical systems will benefit.
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