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Introduction t1. Introduction to Nanotechnology

A biological system can be exceedingly small.
Many of the cells are very tiny, but they are very
active; they manufacture various substances; they
walk around; they wiggle; and they do all kinds of
marvelous things – all on a very small scale. Also,
they store information. Consider the possibility
that we too can make a thing very small which
does what we want – that we can manufacture
an object that maneuvers at that level.

(From the talk “There’s Plenty of Room at the
Bottom”, delivered by Richard P. Feynman at the
annual meeting of the American Physical Society at
the California Institute of Technology, Pasadena,
CA, on December 29, 1959.)
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1.1 Background and Definition of Nanotechnology

On Dec. 29, 1959, at the California Institute of Tech-
nology, Nobel Laureate Richard P. Feynman gave a talk
at the annual meeting of the American Physical So-
ciety that has become one of the twentieth century’s
classic science lectures, titled “There’s Plenty of Room
at the Bottom” [1.1]. He presented a technological vi-
sion of extreme miniaturization several years before the
word “chip” became part of the lexicon. He talked about
the problem of manipulating and controlling things on
a small scale. Extrapolating from known physical laws,
Feynman envisioned a technology using the ultimate
toolbox of nature, building nanoobjects atom by atom
or molecule by molecule. Since the 1980s, many inven-
tions and discoveries in the fabrication of nanoobjects
have become a testament to his vision. In recognition of
this reality, the National Science and Technology Coun-
cil (NSTC) of the White House created the Interagency
Working Group on Nanoscience, Engineering and Tech-
nology (IWGN) in 1998. In a January 2000 speech at
the same institute, former President William J. Clinton
talked about the exciting promise of nanotechnology
and, more generally, the importance of expanding re-
search in nanoscale science and technology. Later that
month, he announced in his State of the Union Ad-
dress an ambitious $ 497 million federal, multi-agency

National Nanotechnology Initiative (NNI) in the fiscal
year 2001 budget, and made it a top science and tech-
nology priority [1.2, 3]. The objective of this initiative
was to form a broad-based coalition in which academe,
the private sector, and local, state, and federal govern-
ments would work together to push the envelope of
nanoscience and nanoengineering to reap nanotechnol-
ogy’s potential social and economic benefits.

Nanotechnology literally means any technology per-
formed on a nanoscale that has applications in the real
world. Nanotechnology encompasses the production
and application of physical, chemical, and biological
systems at scales ranging from individual atoms or
molecules to submicron dimensions, as well as the
integration of the resulting nanostructures into larger
systems. Nanotechnology is likely to have a pro-
found impact on our economy and society in the early
twenty-first century, comparable to that of semiconduc-
tor technology, information technology, or cellular and
molecular biology. Science and technology research in
nanotechnology promises breakthroughs in such areas as
materials and manufacturing, nanoelectronics, medicine
and healthcare, energy, biotechnology, information tech-
nology, and national security. It is widely felt that
nanotechnology will be the next industrial revolution.
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2 Introduction to Nanotechnology

Nanometer-scale features are mainly built up from
their elemental constituents. Chemical synthesis – the
spontaneous self-assembly of molecular clusters (mo-
lecular self-assembly) from simple reagents in solution
– or biological molecules (e.g., DNA) are used as
building blocks for the production of three-dimensional
nanostructures, including quantum dots (nanocrystals)
of arbitrary diameter (about 10 to 105 atoms). A var-
iety of vacuum deposition and nonequilibrium plasma
chemistry techniques are used to produce layered
nanocomposites and nanotubes. Atomically controlled
structures are produced using molecular beam epitaxy
and organo-metallic vapor phase epitaxy. Micro- and
nanosystem components are fabricated using top-down
lithographic and nonlithographic fabrication techniques
and range in size from micro- to nanometers. Continued
improvements in lithography for use in the produc-
tion of nanocomponents have resulted in line widths
as small as 10 nanometers in experimental prototypes.
The nanotechnology field, in addition to the fabrication
of nanosystems, provides the impetus to development of
experimental and computational tools.

The micro- and nanosystems include micro/nano-
electromechanical systems (MEMS/NEMS) (e.g., sen-
sors, actuators, and miniaturized systems comprising
sensing, processing, and/or actuating functions), micro-
mechatronics, optoelectronics, microfluidics, and sys-
tems integration. These systems can sense, control, and
activate on the micro/nanoscale and function individu-
ally or in arrays to generate effects on the macroscale.
The microsystems market in 2000 was about $ 15 bil-
lion, and, with a projected 10–20 % annual growth rate,
it is expected to increase to more than $ 100 billion by
the end of this decade. The nanosystems market in 2001
was about $ 100 million and the integrated nanosys-
tems market is expected to be more than $ 25 billion
by the end of this decade. Due to the enabling na-
ture of these systems, and because of the significant
impact they can have on the commercial and defense
applications, venture capitalists, industry, as well as
the federal government have taken a special interest
in nurturing growth in this field. Micro- and nanosys-
tems are likely to be the next logical step in the “silicon
revolution.”

1.2 Why Nano?

The discovery of novel materials, processes, and phe-
nomena at the nanoscale, as well as the development
of new experimental and theoretical techniques for
research provide fresh opportunities for the develop-
ment of innovative nanosystems and nanostructured

materials. Nanosystems are expected to find various
unique applications. Nanostructured materials can be
made with unique nanostructures and properties. This
field is expected to open new venues in science and
technology.

1.3 Lessons from Nature

Nanotechnology is a new word, but it is not an entirely
new field. Nature has many objects and processes that
function on a micro- to nanoscale [1.2, 4]. The under-
standing of these functions can guide us in imitating and
producing nanodevices and nanomaterials.

Billions of years ago, molecules began organiz-
ing themselves into the complex structures that could
support life. Photosynthesis harnesses solar energy to
support plant life. Molecular ensembles are present in
plants, which include light harvesting molecules, such
as chlorophyll, arranged within the cells on the nanome-
ter to micrometer scales. These structures capture light
energy, and convert it into the chemical energy that
drives the biochemical machinery of plant cells. Live
organs use chemical energy in the body. The flagella,
a type of bacteria, rotates at over 10,000 RPM [1.5].

This is an example of a biological molecular ma-
chine. The flagella motor is driven by the proton
flow caused by the electrochemical potential differ-
ences across the membrane. The diameter of the bearing
is about 20–30 nm, with an estimated clearance of
about 1 nm.

In the context of tribology, some biological systems
have anti-adhesion surfaces. First, many plant leaves
(such as lotus leaf) are covered by a hydrophobic cuticle,
which is composed of a mixture of large hydrocar-
bon molecules that have a strong hydrophobia. Second,
the surface is made of a unique roughness distribu-
tion [1.6, 7]. It has been reported that for some leaf
surfaces, the roughness of the hydrophobic leaf surface
decreases wetness, which is reflected in a greater contact
angle of water droplets on such surfaces.
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Introduction to Nanotechnology 1.4 Applications in Different Fields 3

1.4 Applications in Different Fields

Science and technology continue to move forward in
making the fabrication of micro/nanodevices and sys-
tems possible for a variety of industrial, consumer, and
biomedical applications. A range of MEMS devices
have been produced, some of which are commercially
used [1.4,8–12]. A variety of sensors are used in indus-
trial, consumer, and biomedical applications. Various
microstructures or microcomponents are used in micro-
instruments and other industrial applications, such as
micromirror arrays. Two of the largest “killer” indus-
trial applications are accelerometers (about 85 million
units in 2002) and digital micromirror devices (about
$ 400 million in sales in 2001). Integrated capacitive-
type, silicon accelerometers have been used in airbag
deployment in automobiles since 1991 [1.13, 14].
Accelerometer technology was about a billion-dollar-
a-year industry in 2001, dominated by Analog Devices
followed by Motorola and Bosch. Commercial digital
light processing (DLP) equipment using digital micro-
mirror devices (DMD) were launched in 1996 by Texas
Instruments for digital projection displays in portable
and home theater projectors, as well as table-top and
projection TVs [1.15, 16]. More than 1.5 million pro-
jectors were sold before 2002. Other major industrial
applications include pressure sensors, inkjet printer
heads, and optical switches. Silicon-based piezoresis-
tive pressure sensors for manifold absolute pressure
sensing for engines were launched in 1991 by Nova-
Sensor, and their annual sales were about 25 million
units in 2002. Annual sales of inkjet printer heads with
microscale functional components were about 400 mil-
lion units in 2002. Capacitive pressure sensors for
tire pressure measurements were launched by Mo-
torola. Other applications of MEMS devices include
chemical sensors; gas sensors; infrared detectors and
focal plane arrays for earth observations; space sci-
ence and missile defense applications; pico-satellites for
space applications; and many hydraulic, pneumatic, and
other consumer products. MEMS devices are also be-
ing pursued in magnetic storage systems [1.17], where
they are being developed for super-compact and ultra-
high recording-density magnetic disk drives. Several
integrated head/suspension microdevices have been fab-
ricated for contact recording applications [1.18, 19].
High-bandwidth, servo-controlled microactuators have
been fabricated for ultrahigh track-density applications,
which serve as the fine-position control element of
a two-stage, coarse/fine servo system, coupled with
a conventional actuator [1.20–23]. Millimeter-sized

wobble motors and actuators for tip-based recording
schemes have also been fabricated [1.24].

BIOMEMS are increasingly used in commercial and
defense applications (e.g., [1.4,25–28]). Applications of
BIOMEMS include biofluidic chips (otherwise known
as microfluidic chips, bioflips, or simply biochips)
for chemical and biochemical analyses (biosensors)
in medical diagnostics (e.g., DNA, RNA, proteins,
cells, blood pressure and assays, and toxin identifi-
cation) and implantable pharmaceutical drug delivery.
The biosensors, also referred to as lab-on-a-chip, inte-
grate sample handling, separation, detection, and data
analysis onto one platform. Biosensors are designed
to either detect a single or class of (bio)chemicals or
system-level analytical capabilities for a broad range
of (bio)chemical species known as micro total analysis
systems (µTAS). The chips rely on microfluidics and
involve the manipulation of tiny amounts of fluids in
microchannels using microvalves for various analyses.
The test fluid is pumped into the chip generally using
an external pump for analyses. Some chips have been
designed with an integrated electrostatically actuated
diaphragm-type micropump. Silicon-based, disposable
blood-pressure sensor chips were introduced in the
early 1990s by NovaSensor for blood pressure moni-
toring (about 20 million units in 2002). A variety of
biosensors are manufactured by various companies, in-
cluding ACLARA, Agilent Technologies, Calipertech,
and I-STAT.

After the tragedy of Sept. 11, 2001, concern over
biological and chemical warfare has led to the develop-
ment of handheld units with bio- and chemical sensors
for the detection of biological germs, chemical or nerve
agents, mustard agents, and chemical precursors to
protect subways, airports, the water supply, and the
population [1.29].

Other BIOMEMS applications include minimal
invasive surgery, such as endoscopic surgery, laser
angioplasty, and microscopic surgery. Implantable ar-
tificial organs can also be produced.

Micro-instruments and micro-manipulators are used
to move, position, probe, pattern, and characterize
nanoscale objects and nanoscale features. Miniatur-
ized analytical equipment includes gas chromatography
and mass spectrometry. Other instruments include
micro-STM, where STM stands for scanning tunneling
microscope.

Examples of NEMS include nanocomponents, nano-
devices, nanosystems, and nanomaterials, such as
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4 Introduction to Nanotechnology

microcantilever with integrated sharp nanotips for STM
and atomic force microscopy (AFM), AFM array (milli-
pede) for data storage, AFM tips for nanolithography,
dip-pen nanolithography for printing molecules, bio-
logical (DNA) motors, molecular gears, molecularly
thick films (e.g., in giant magneto-resistive or GMR
heads and magnetic media), nanoparticles, (e.g., nano-
magnetic particles in magnetic media), nanowires,
carbon nanotubes, quantum wires (QWRs), quan-
tum boxes (QBs), and quantum transistors [1.30–34].
BIONEMS include nanobiosensors – a microarray of
silicon nanowires, roughly a few nm in size, to selec-
tively bind and detect even a single biological molecule,
such as DNA or protein, by using nanoelectronics to de-
tect the slight electrical charge caused by such binding,
or a microarray of carbon nanotubes to electrically de-
tect glucose, implantable drug-delivery devices – e.g.,

micro/nanoparticles with drug molecules encapsulated
in functionized shells for a site-specific targeting ap-
plication, and a silicon capsule with a nanoporous
membrane filled with drugs for long term delivery,
nanodevices for sequencing single molecules of DNA
in the Human Genome Project, cellular growth using
carbon nanotubes for spinal cord repair, nanotubes for
nanostructured materials for various applications, such
as spinal fusion devices, organ growth, and growth of
artificial tissues using nanofibers.

Nanoelectronics can be used to build computer mem-
ory, using individual molecules or nanotubes to store bits
of information, as well as molecular switches, molecu-
lar or nanotube transistors, nanotube flat-panel displays,
nanotube integrated circuits, fast logic gates, switches,
nanoscopic lasers, and nanotubes as electrodes in fuel
cells.

1.5 Reliability Issues of MEMS/NEMS

There is an increasing need for a multidisciplinary,
system-oriented approach to manufacturing micro/
nanodevices that function reliably. This can only be
achieved through the cross-fertilization of ideas from
different disciplines and the systematic flow of infor-
mation and people among research groups. Common
potential failure mechanisms for MEMS/NEMS that
need to be addressed in order to increase reliability are:
adhesion, friction, wear, fracture, fatigue, and contam-
ination. Surface micro/nanomachined structures often
include smooth and chemically active surfaces. Due to
the large surface area to volume ratio in MEMS/NEMS,
they are particularly prone to stiction (high static fric-
tion) as part of normal operation. Fracture occurs when
the load on a microdevice is greater than the strength
of the material. Fracture is a serious reliability con-
cern, particularly for the brittle materials used in the
construction of these components, since it can im-
mediately, or eventually, lead to catastrophic failures.
Additionally, debris can be formed from the fracturing
of microstructures, leading to other failure processes.
For less brittle materials, repeated loading over a long
period causes fatigue that would also lead to the break-
ing and fracturing of the device. In principle, this failure
mode is relatively easy to observe and simple to pre-
dict. However, the materials properties of thin films are
often not known, making fatigue predictions prone to
error.

Many MEMS/NEMS devices operate near their ther-
mal dissipation limit. They may encounter hot spots
that can cause failures, particularly in weak structures
such as diaphragms or cantilevers. Thermal stressing
and relaxation caused by thermal variations can cre-
ate material delamination and fatigue in cantilevers.
In large temperature changes, as experienced in the
space environment, bimetallic beams will also experi-
ence warping due to mismatched coefficients of thermal
expansion. Packaging has been a big problem. The con-
tamination, which probably happens in packaging and
during storage, can also strongly influence the reliabil-
ity of MEMS/NEMS. For example, a particulate dust
landed on one of the electrodes of a comb drive can
cause catastrophic failure. There are no MEMS/NEMS
fabrication standards, which makes it difficult to transfer
fabrication steps in MEMS/NEMS between foundaries.

Obviously, studies of determination and suppres-
sion of active failure mechanisms affecting this new
and promising technology are critical to the high re-
liability of MEMS/NEMS and are determining factors
in successful practical application.

Mechanical properties are known to exhibit a depen-
dence on specimen size. Mechanical property evaluation
of nanometer-scaled structures is carried out to help
design reliable systems, since good mechanical prop-
erties are of critical importance in such applications.
Some of the properties of interest are: Young’s mod-
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Introduction to Nanotechnology References 5

ulus of elasticity, hardness, bending strength, fracture
toughness, and fatigue life. Finite element modeling is
carried out to study the effects of surface roughness
and scratches on stresses in nanostructures. When nano-

structures are smaller than a fundamental physical length
scale, conventional theory may no longer apply, and new
phenomena may emerge. Molecular mechanics is used
to simulate the behavior of a nano-object.

1.6 Organization of the Handbook

The handbook integrates knowledge from the fabrica-
tion, mechanics, materials science, and reliability points
of view. Organization of the book is straightforward.
The handbook is divided into six parts. This first part
introduces the nanotechnology field, including an intro-
duction to nanostructures, micro/nanofabrication and,
micro/nanodevices. The second part introduces scan-
ning probe microscopy. The third part provides an

overview of nanotribology and nanomechanics, which
will prepare the reader to understand the tribology and
mechanics of industrial applications. The fourth part
provides an overview of molecularly thick films for
lubrication. The fifth part focuses on industrial appli-
cations and microdevice reliability. And the last part
focuses on the social and ethical implications of nano-
technology.
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