Lightning ASIA - Shining WORLD

Venue
Golden Jubilee Hall

Organized by
Department of Chemistry
(School of Chemical Sciences & Technology)
Dr. H. S. Gour Vishwavidyalaya
(A Central University)
Sagar-470003 (MP), India
December 18-19, 2015

| PROGRAMME & ABSTRACTS |

VENUE
Golden Jubilee Hall
Organized by
Department of Chemistry
(School of Chemical Sciences & Technology)
Dr. H. S. Gour Vishwavidyalaya, Sagar-470003 (MP), India.

Sponsored

Dr. H. S. Gour Vishwavidyalaya, Sagar

MP Council of Science and Technology, Bhopal
DIATOM FRUSTULES AS PHOTO-REGULATORS OF DIATOM PHOTOBIOLOGY

Mohamed M. Ghobara¹, Vandana Vinayak², David Roy Smith³, Benoit Schoefs⁴, Ille C.Gebeshuber⁵, Richard Gordon⁶*
¹Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt ²Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Hari Singh Gour Central University, Sagar, M.P., India 470003, ³Department of Biology, University of Western Ontario, London ON N6A 5B7 Canada, ⁴Department of Botany, University of Lé Mans, France, ⁵Institute of Applied Physics, Vienna University of Technology, 1040 Wien, Austria, ⁶Embryogenesis Center, Gulf Specimen Marine Laboratory, 222 Clark Drive Panama City FL 32401 USA.
Email: mohamedghobara@rocketmail.com.

The tiny sea jewels, diatoms, are unicellular microscopic algae with inorganic cell walls called "frustules", which are made of hydrated silica. Beside other interesting facts about diatoms, their frustules show amazing optical properties including light focusing in centric diatoms [1], photonic crystal modes [2] and UV-induced photoluminescence properties [3]. Such properties may have certain functions in diatom photobiology. The frustules may be involved in photo-regulation processes that keep the photosynthetically active radiation near chloroplasts and protect them from harmful wavelengths and high intensities. Moreover the frustule may play a role in dim light environments as they redistribute the light inside the cell [4]. Such optical properties may help in light communication and sharing in colonial diatoms. Due to these reasons, manipulation of the optical properties of diatom frustules may lead to more efficient solar energy harvesters [5], with diatom solar panels proposed for production of both electricity and biofuel [6]. The power of diatoms to work with light is both fascinating in itself and a source of new technologies.

Keywords: Diatom, photobiology, natural silica, optical properties.

References:

Department of Chemistry
(School of Chemical Sciences & Technology)
Dr. H. S. Gour Central University, Sagar, MP 470003, India.
DIATOM FRUSTULES AS PHOTO-REGULATORS OF DIATOM PHOTOBIOLOGY

Mohamed M. Ghobara1, Vandana Vinayak2, David Roy Smith3, Benoît Schoefs4, Ille C. Gebeshuber5, Richard Gordon6*

1Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt 2Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Hari Singh Gour Central University, Sagar, M.P, India 470003, 3Department of Biology, University of Western Ontario, London ON N6A 5B7 Canada, 4Department of Botany, University of Le Mans, France, 5Institute of Applied Physics, Vienna University of Technology, 1040 Wien, Austria, 6Embryogenesis Center, Gulf Specimen Marine Laboratory, 222 Clark Drive Panacea FL 32346 USA.

Email: mohamedghobara@rocketmail.com.

The tiny sea jewels, diatoms, are unicellular microscopic algae with inorganic cell walls called “frustules”, which are made of hydrated silica. Beside other interesting facts about diatoms, their frustules show amazing optical properties including light focusing in centric diatoms [1], photonic crystal modes [2] and UV-induced photoluminescence properties [3]. Such properties may have certain functions in diatom photobiology. The frustules may be involved in photo-regulation processes that keep the photosynthetically active radiation near chloroplasts and protect them from harmful wavelengths and high intensities. Moreover the frustule may play a role in dim light environments as they redistribute the light inside the cell [4]. Such optical properties may help in light communication and sharing in colonial diatoms. Due to these reasons, manipulation of the optical properties of diatom frustules may lead to more efficient solar energy harvesters [5], with diatom solar panels proposed for production of both electricity and biofuel [6]. The power of diatoms to work with light is both fascinating in itself and a source of new technologies.

Keywords: Diatom, photobiology, natural silica, optical properties.

References: