Geckos, white blood cells and diatoms:
How biology inspires novel dry, switchable and self-healing adhesives

I.C. Gebeshuber

Institut fuer Allgemeine Physik, Technische Universitaet Wien, Wiedner Hauptstrasse 8-10/134, 1040 Wien, Austria & Austrian Center of Competence for Tribology, Viktor Kaplan-Strasse 2, 2700 Wiener Neustadt, Austria

Natural biotribological systems have been evolutionarily optimized over millions of years. Many of them have functional units in the micro- and nanometer regime. Natural biotribological systems have already inspired novel micro- and nanotechnological applications: dry adhesives, switchable adhesives and self-healing adhesives [1]. Examples presented comprise natural micromechanical systems made of nanostructured silica (diatoms produce hinges and interlocking devices on the micrometer scale and below [2]), adhesive molecules that can switch states and account for white blood cell rolling in endothelial cells [3], dry adhesives as they occur on the Gecko foot [4] and certain insect attachment pads [5], and single molecules that serve as strong self-healing adhesives (diatom underwater adhesives [6], abalone shell proteins [7]).

References:


