Charging and discharging of nano-capillaries during ion-guiding of multiply charged projectiles

M. Fürsatz1, W. Meissl1, S. Pleschko1, I.C. Gebeshuber1, N. Stolterfoht2, HP. Winter1, and F. Aumayr1

1Institut für Allgemeine Physik, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
2Hahn Meitner Institut Berlin, Glienicker Str. 100, D-14109 Berlin, Germany

http://www.iap.tuwien.ac.at/www/atomic/

\texttt{e-mail:aumayr@iap.tuwien.ac.at}

EXPERIMENTAL SETUP

Institut für Allgemeine Physik - Vienna University of Technology

ABSTRACT

Efficient guiding of slow (typ. keV) highly charged ions (Ne7+) through insulating nano-capillaries has been observed even if the capillaries were tilted by up to 20° with respect to the incoming ion beam direction \cite{1}. Surprisingly, the majority of the projectile ions was found to survive the transition through the insulating capillary in their initial charge state. Measured 1-dim. scattering distributions of the transmitted particles indicated propagation of the projectile ions along the capillary axis. As reason for this “guiding effect” a charging-up of the inner walls of the capillaries in a self-organized way due to impact of preceding projectile ions has been proposed \cite{1-4}.

Theoretical modelling of the experimental observations has so far proven to be a challenging task \cite{1-4}. Difficulties arise especially due to the different characteristic times observed in the experiment for capillary-wall charging and discharging \cite{3, 4}.

To gain more insight into this interesting phenomenon we have measured the 2-dim. scattering distribution of transmitted projectiles during the charging-up process.

EQUIPMENT

The capillary target for these experiments consisted of a 10 µm thick PET (polyethylene terephthalate) foil from HMI-Berlin. It was characterized with AFM at TU Wien (mean capillary diameter: 180 nm ± 25%, capillaries per unit area: 4x106 cm-2).

Acknowledgement

Work supported by Austrian Fonds zur Förderung der wissenschaftl. Forschung (FWF)

References

\begin{thebibliography}{9}
\bibitem{2} N. Stolterfoht, et al., Vacuum 73, 31 (2004).
\bibitem{5} E. Gácsék, et al, private communication.
\bibitem{11} K. Schiessl and C. Lemell, private communication.
\end{thebibliography}