Biotribological model systems for emerging nanometer scale technologies

Ille C. Gebeshubera,b and Richard M. Crawfordc

a Institut für Allgemeine Physik, Vienna University of Technology, Wiedner Hauptstrasse 8-10/134, 1040 Wien, Austria & b AC2T Austrian Center of Competence for Tribology, Viktor Kaplan-Strasse 2, 2700 Wiener Neustadt, Austria
c Alfred-Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
ille@iap.tuwien.ac.at, rcrawford@awi-bremerhaven.de

\textbf{Abstract}

Technological devices such as pressure sensors, gyroscopes and accelerometers get smaller and smaller. This increases the necessity for the fundamental understanding of tribological phenomena at the micro- and nanometer scale. Biological systems excel also at this scale.

The thesaurus that nature has developed during the last millions of years of evolution comprises self-cleaning surfaces, systems with friction coefficients smaller than any occurring in man-made systems and organisms that produce macromolecules with ice binding properties. Such systems with well adapted biotribological properties shall serve as inspiration for innovation in micro- and nanotechnology.

\textbf{Tribology}

Tribology is the branch of engineering that deals with the interaction of surfaces in relative motion (as in bearings or gears): their design, friction, adhesion, lubrication and wear.

\textbf{Biotribology}

The aim of biotribology is to gather information about friction, adhesion, lubrication and wear of biological systems and to apply this knowledge to technological innovation as well as to development of environmentally sound products.

\section*{Why biomicro -nanotribology ?}

Continuous miniaturization of technological devices like hard disk drives and biosensors increases the necessity for the fundamental understanding of tribological phenomena at the micro- and nanoscale.

\section*{Biological systems}

Biological systems excel also at this scale and therefore their strategies can serve as templates for new engineering devices.

\section*{Diatoms}

- size some micrometers
- single cellular organisms
- reproduce via cell division
- 10 000s species, since 180 millions of years
- under ideal conditions, within ten days the offspring of one single cell number is one billion cells \rightarrow assembly line production of nanostructures!
- nanostructured surfaces made from amorphous silicates

\section*{References}

\begin{itemize}
\end{itemize}

\section*{Acknowledgment}

Part of this work has been funded by the Austrian Kplus-Program via the Austrian Center of Competence for Tribology, AC2T research GmbH, Wiener Neustadt, Austria.