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Introduction 
There is a long raging debate about the evolution of biological complexity. Despite the common sense 
observation that evolution produces more and more complex organisms, there is no accepted argument 
in favor of increasing complexity during biological evolution. In fact, many notable evolutionary 
biologists have explicitly warned against drawing such conclusion. For example, Maynard Smith and 
Szathmáry (1995) conclude that the increase of fitness cannot be equated with the increase of 
complexity, and not even the increase of fitness can be taken for granted during evolution. Others argue 
that the recognizable patterns can be explained by a ``random walk'' which started from the simplest 
forms, thus complexity is expected to increase not because of some underlying trends but because of the 
boundary conditions of the process (Gould, 1996).  On the other hand, Adami (2000) and his colleagues 
were able to show, with the help of evolving artificial life, that physical complexity must always 
increase in fixed environments for organisms whose fitness depends only on the sequence of their 
genome. The obvious shortcomings of this approach are that the environment is rarely fixed and that the 
fitnesses of organisms might depend on many factors other than their respective genomic sequences. Yet 
observing the increase of structural complexity of living creatures can make another line of argument in 
favor of increasing complexity. The major steps of this process sometimes called the ''major transitions 
of evolution'' (Maynard Smith and Szathmáry, 1995). Structural complexity increases during these 
transitions by definition, but what happens with physical complexity? Clearly the physical complexity 
of those parts of the genome that code for the structural changes should increase, but what happens with 
the other regions? Can we expect an increase of complexity or not?  To study the question we 
developed a computer simulation of a generalized transition event. The properties of the transitions were 
taken from the book of Maynard Smith and Szathámry (1995).  
 

Physical Complexity 
Whereas the opinions on a general trend in evolution towards increasing complexity vary, increasing 
complexity during major evolutionary transitions may be obvious, as the result of a major transition 
might be exactly what we would call a more complex biological system.  However, in order to decide 
on the question whether or not complexity always increases during major transitions in evolution, we 



first have to make clear what complexity should denote precisely when referring to biological systems. 
Although there is some common understanding of the meaning of complexity referring to biological 

organisms, to determine exactly what this notion stands for is not evident (Adami 2002).  While several 
measures of complexity abound, not all are applicable for biology.  The complexity of dynamical 
systems refers mostly to the features of processes, but for biological organisms complexity is rather 
related to form, function, or the underlying sequences.  The number of different cell types, or the 
number of functions an organism can perform captures to some extent its complexity, but a general 
measure of structural or functional complexity is hard to define, as organisms differ in so many aspects. 

However, it is possible to compare nucleic acid sequences, and even though the 
genotype-to-phenotype mapping is of great intricacy, the sequences should at least to some extent reflect 
the complexity of the corresponding organism. 

Physical complexity, as stated in Adami (2002) is a measure of sequence complexity.  This approach 
turns out to be very intuitive.  It seems to correspond exactly to what biologists think is increasing when 
systems get self-organized.  Furthermore, Adami argues that physical complexity must increase in 
molecular evolution under certain circumstances, due to natural selection. 

An important aspect of information theory is that information is physical and must be about something. 
An arrangement of symbols becomes information only in some context to other physical objects.  In 
biological systems, those parts of the genome which actually correspond to some function, in fact also 
store information about the environment and co-evolving species.  The physical complexity of a 
sequence is meant to reflect the amount of information stored about the environment.  Physical 
complexity is a relative measure, as it depends on the environment.  It is possible to show that physical 
complexity must increase due to natural selection, if the environment does not change and the fitness of 
organisms only depends on their own sequence information.   On the other hand, a drastically changing 
or fluctuating environment can lead to a decrease of physical complexity. 

For a calculation of the physical complexity, we proceed according to Adami (2002).  The entropy of 
an ensemble of sequences X, in which sequences si occur with probabilities pi is calculated as 

∑−= i ii ppXH log)( , where the sum goes over all different genotypes i in X.  By setting the base of 

the logarithm to the size of the monomer alphabet, the maximal entropy (in the absence of selection) is 
given by Hmax(X) = L, and in fact corresponds to the maximal information that can potentially be stored 
in a sequence of length L. 

The amount of information a population X stores about the environment E is now given by: 
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The entropy of an ensemble of sequences is estimated by summing up the entropy at every site along the 
sequence.  The per-site entropy is given by: 
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for site j, where pi(j) denotes the probability to find nucleotides i at position j.  The entropy is now 



approximated by the sum of per-site entropies; 
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so that an approximation for the physical complexity of a population of sequences with length L  
is obtained by 
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A Simple Model 
We consider a simple model of a general transition in organization.  It consists of a square toroidal 
lattice on which a number of individuals are placed and an environment consisting of k generic tasks.  
At the outset, each individual is assigned a genome of k+2 values drawn from the uniform distribution 
on [0, 1].  The first k genome entries represent the aptitudes of that individual in the k tasks; the last two 
entries are the cooperativity and staying threshold, to be discussed shortly. 

At first the individuals move about the lattice in unbiased two-dimensional random walks, and without 
interacting with one another.  Each seeks to maximize its fitness subject to the constraint that a fixed 
minimum level of fitness τ must be attained in each task, by dividing one allocation unit at each timestep.  
Thus, when gij and aij are the genome value and allocation fraction of the ith individual in the jth task and 
ej is the value of the environment in task j, the fitness of individual i is: 
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The optimal strategy for an individual is to meet the threshold exactly in all tasks, and devote the 
remaining allocation fraction to that task j for which the product gijej is greatest.  The consequence to an 
individual which cannot meet the threshold in all tasks is simply that its fitness will not exceed kτ. 

To represent selection, at each timestep each individual has a fixed probability of replacement.  The 
replacement is a near-copy of another individual in the population, where the jth value in the new 
genome is given as g'ij = gij + M, where M is a uniform random variable on the interval [-µ, µ] and µ is 
the mutation rate.  The individual serving as the basis for the replacement is chosen at random from the 
population with a probability proportional to its present fitness. 

The organizational transition occurs when the individuals are permitted to form collectives.  If two or 
more individuals find themselves on the same lattice point, they unite to form a collective.  The 
collective computes fitness similarly to individuals:  the differences are that the threshold is increased 
from τ to nτ where n is the number of individuals in the collective and that the allocation is not one but 
the sum of the cooperativities of each of the individuals, multiplied by a benefit factor.  The collective 
can use the resources of any of the individuals in any of the tasks.  After the collective's fitness is 
computed, it is divided equally among the individuals regardless of their contribution.  Then each 
individual computes its fitness using the fraction of its allocation which it did not devote to the collective, 
i.e. one minus its cooperativity. 



Finally, individuals decide at each timestep whether to remain in the collective by comparing 
exp(-(log 2) fC / fI) to its staying threshold, where fC is the fitness gotten from the collective and fI that 
gotten alone, and staying put if the latter exceeds the former. 

We measure the physical complexity as described above, with a small adjustment to our model.  
Physical complexity is computed from a set of fixed-length strings whose symbols come from a finite 
alphabet.  In this model the genomic aptitudes are numbers between zero and one, so we convert them 
to bit strings before computing the complexity.  To do this we chose a field width c and divided the 
interval [0, 1] into 2c equally-sized intervals labeled with consecutive binary strings of length c.  We 
associated to each genomic aptitude the string of the interval in which it lay.  Thus, with field width 3 
the genomic aptitude would get the string 111.  These strings for each genomic aptitude were 
concatenated to form a single bit string for each individual. 

 
Results and Discussions 
We implemented the model on a computer and ran it with 50 individuals on a 10×10 grid with parameter 
settings as described below.  The results of a typical run appear in (Figure 1-3).  The mean genomic 
aptitudes tend towards one as individuals are replaced with fitter individuals.  No trend is apparent in 
the mean cooperativity and staying threshold.  Collectives come into and go out of existence, while the 
mean fitness rises to plateaus whose heights vary from run to run. 

The model always results in an increase in both structural and physical complexity.  The former is 
true by definition since a collective is structurally more complex than the individuals of which it is 
composed; whenever collectives are permitted, the structural complexity increases.  The physical 
complexity increases as a result of the fitness scheme and replacement rule, independently of whether 
collectives can form or not.  An organism with genomic aptitudes all equal to one has greater fitness in 
this model than an organism without, which results in populations with genomic aptitudes all close to 
one after enough generations have passed.  In such a population the physical complexity, effectively a 
measure of homogeneity, must increase. 

We computed several statistics about each collective during a run, including its mean size, mean 
values of the fitness and genomic values of its constituents, mean number of freeriders (members with 
cooperativity less than 1/2), and the mean of the variance of its genomic aptitudes.  The last statistic 
measures the extent of division of labor within a collective; it is large when members specialize in 
particular tasks and small when they do not.  We also computed the mean lifetime over all the 
collectives during a simulation, reasoning that conditions favoring collectives would result in longer 
lifetimes. 

We found that collective stability was strongly related to both the birth-death rate and the benefit 
factor.  In Table 1, each value is the mean collective lifetime averaged over ten simulations under some 
combination of birth-death rate and benefit factor. Increasing the birth-death rate undermines collective 
stability. When replacement occurs within an existing stable collective, the new individual might be 
uncooperative or require a high return from the collective where the old was not.  It could also be that 



the new individual is better for the collective than the old, but since uncooperative and/or demanding 
individuals tend not to be in collectives in the first place, high birth-death tends to break up collectives. 

Increasing the benefit factor tends to increase collective stability. This is because the fitness obtained 
from the collective increases, increasing the likelihood that the collective fitness to individual fitness 
ratio will be above each member's threshold.  This effect is extremely important to collective stability; 
when the benefit factor drops to 1, a mean lifetime 1.4 indicates that most collectives disband a single 
timestep after forming. 

We found a number of strong correlations between other collective statistics, averaged over ten 
simulations with a particular combination of birth-death rate and benefit factor.  As one expects, there 
were strong positive correlations between the size, genomic aptitudes, and fitness within a collective.  
In Table 2, we show the other strong correlations between collective statistics.  The pairs are not 
surprising: fitness correlates positively with cooperativity, mean lifetime, and staying threshold, in 
decreasing order of correlation strength, and negatively with mean number of freeriders.  The mean 
lifetime correlates strongly with collective size. 

Changing the birth-death rate doesn't affect the magnitude of any of the correlations very much.  It 
appears that increasing the benefit factor strengthens the correlation between fitness & mean lifetime 
and mean lifetime & size, and decreases that between fitness and staying threshold.  The correlations 
are probably insensitive to the birth-death rate because it only affects collectives externally.  Increasing 
the benefit factor, however, does affect the dynamics within a collective, evidently making it more 
stable.  The correlation trends make sense; longer-lived, stable collectives have the chance to grow 
larger and accrue fitness, and will be able to support more members with lower staying thresholds. 

Some correlations we had expected to be strong were curiously weak under this model.  Division of 
labor as measured by the mean variance of genomic aptitudes correlated with nothing strongly.  Mean 
lifetime correlated strongly with fitness and size but not cooperativity or the number of freeriders.  It 
could well be that division of labor doesn't occur because the replacement rule tends to generate like 
individuals, each of whom is about as good as any other in a given task.  As for the mean lifetime, one 
way to account for its independence from cooperativity is if collectives are incapable of selecting against 
noncooperative individuals.  Then collectives would tend to have as many freeriders as contributors 
and thus no correlation between their lifetimes and their composition.  In this model, the only way for 
collectives to rid themselves of freeriders is if the freeriders also happen to have lower fitness than 
contributors.  From the table, it appears that they do, so one would expect a negative correlation to 
develop between mean lifetime and number of freeriders if the simulations were to be run longer than 
10000 steps. 
 

Conclusions 
The physical complexity of those regions that do not code for the structural changes increases 
independently from structural complexity. There is no correlation between fitness of collectives and 
division of labor (possible causes will be discussed later). On the other hand, there is a correlation 



between the size of colonies and fitness. Thus, it seems that there is no additional increase of physical 
complexity other than those regions that code for the structural changes. 

Of course, the results should be viewed in the light of the assumptions of the model. Some of these 
assumptions are deliberate simplifications, elaborating them in detail might provide ground for further 
research. One of these assumptions is the fixed nature of the environment; the results would almost 
certainly change if we allowed the environment to vary.  Introducing fluctuations in the environment 
(which would alter the effectiveness of different genotypes) might trigger a greater diversity of 
collectives and might favor further division of labor. Second, we exogenously control the transition, that 
is, it is a built-in feature whether or not individuals are allowed to form collectives. Arguably, it would 
be much more interesting to produce an evolutionary model in which a transition occurs endogenously. 
However, it was beyond the scope of our current investigation.  Third, as long as an organism has 
allocation left over it can continue to improve its fitness at the same rate.  That is, there is no 
diminishing return when the organism decides to invest all of its remaining resources into the same trait. 
Introducing such diminishing returns might favor greater diversity and hence greater division of labor. 
Fourth, it seems that it is too easy to achieve the optimal genomic aptitude; as a result the whole 
population becomes homogenous with respect of the task genes. In turn this might be one reason why we 
cannot observe division of labor.  If everyone has the best available genes for a given task then there is 
no reason to specialize.  This homogeneity might result from the limited size of the population, from 
the lack of environmental perturbations, and from the low mutation rate. 

Finally, it is worth noting that collectives won't form if the birth/death rate is too high, or if the public 
goods benefit factor is too low.  The later result is expected but the former is somewhat surprising. It 
might be due to the fact that newborn individuals with low cooperativeness destroy the collectives. 
 

Figures and Tables 
Figure 1         Figure 2 
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Figures 1-3.  Results from a typical run of 10,000 timesteps.  Figure 1 shows average aptitudes of individuals 

(dark solid lines), cooperativity (solid line), and staying threshold (dashed line). 

 

Table 1      

A Benefit factor 1 3 5 10 

 Mean lifetime 1.35 2.9 39.2 194.6 

 *Birth-death rate was 0.05    

      

B Birth-death rate 0.005 0.01 0.05 0.1 

 Mean lifetime 117.7 39.2 13.4 8.5 

 *Benefit factor was 5     

Table 2      

A Benefit Factor 1 3 5 10 

 Fitness/Cooperativity 0.76 0.8 0.73 0.54 

 Fitness/Lifetime 0.08 0.17 0.39 0.61 

 Fitness/Freerider -0.03 -0.08 -0.1 -0.28 

 Fitness/Threshold 0.07 0.17 0.18 -0.35 

 Lifetime/Collective Size 0.08 0.19 0.44 0.71 

 *Birth-death rate was 0.05     

      

B Birth-death rate 0.005 0.01 0.05 0.1 

 Fitness/Cooperativity 0.64 0.73 0.73 0.7 

 Fitness/Lifetime 0.47 0.39 0.41 0.39 

 Fitness/Freerider -0.14 -0.1 -0.27 -0.28 

 Fitness/Threshold 0.09 0.18 0.06 0.09 

 Lifetime/Collective Size 0.44 0.44 0.48 0.51 

 *Benefit factor was 5     
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