Table of Contents

2 Message from STLE President Peter Drechsler
4 Daily Schedule at a Glance
6-10 Your Personal Itinerary Planner
11 Hilton Atlanta Trade Show Floor Plan
12 Hilton Atlanta Meeting Room Floor Plans
16 Exhibit Hours
16 Annual Meeting General Information & Policies
16 Certificate Exams
16 Future STLE Meeting Dates
17 Social Events
18 Education Courses
20 Local Section Leader Workshop: "Committee Meetings that Work," by Drs. Jean & Ed Becker
20 Keynote Address: "Biological Principles and Biomimetics of Tribologically Active Materials," by Dr. Stanislav N. Gorb
22 Exhibitor Advisory Committee
22 Exhibitors
24 Annual Meeting Sponsors
25 Student Poster Abstracts
32 Index to Technical Sessions & Education Courses

33 Sunday/Monday Overview
34 Time Grid: Monday Technical Sessions
38 Monday Technical Sessions
57 Tuesday Overview
58 Time Grid: Tuesday Technical Sessions
62 Tuesday Technical Sessions
89 Wednesday Overview
90 Time Grid: Wednesday Technical Sessions
94 Wednesday Technical Sessions
121 Thursday Overview
122 Time Grid: Thursday Technical Sessions
124 Thursday Technical Sessions
144 Commercial Marketing Forum Schedule
148 STLE Board of Directors
148 2011 Annual Meeting Program Committee
148 2011 Annual Meeting Education Committee
149 2011 Annual Meeting Education Course Chairs
149 STLE 2011 Technical Committees
151 STLE 2011 Industry Councils
152 Award Winners
154 Participants Index
162 Advertisers Index
163 Notes

The 2011 STLE Annual Meeting & Exhibition is sponsored by the Society of Tribologists and Lubrication Engineers, an international organization headquartered at 840 Busse Highway, Park Ridge, Illinois (USA) 60068-2376. Telephone: (847) 825-5536. Fax: (847) 825-1456. E-mail: information@stle.org. Web: www.stle.org. STLE is a not-for-profit professional society founded in 1944 to advance the science of tribology and best practices in lubrication engineering.

www.stle.org

66th Annual Meeting and Exhibition Program Guide
Daily Schedule at a Glance

All room numbers refer to Hilton Atlanta.

Sunday, May 15, 2011

Registration
7 am – 6 pm – 2nd Floor Foyer

Speakers Breakfast
7 – 7:45 am – Salon A-C

Education Courses (8 am – 5 pm)
Basic Lubrication 101 – 302
Bio Fuels and Lubes – 305
Condition Monitoring – 306
Hydraulics – 303
Synthetic Lubricants 203 – 304

Education Courses (1:30 – 5 pm)
Nanotribology Special Session – 309/310

Local Section Leader Workshop (5 – 6:30 pm)
"Committee Meetings that Work," by Drs. Jean & Ed Becker – 309/310

Monday, May 16, 2011

Registration
7 am – 6 pm – 2nd Floor Foyer

Speakers Breakfast
7 – 7:45 am – Salon A-C

Technical Sessions (8 – 10 am)
1A Rolling Element Bearings I: Erwin V. Zaretsky Symposium – 202
1B Nanotribology I: Nanomaterials and Applications I – 203
1C Lubrication Fundamentals I – 204
1D Biotribology I: Skin Tribology, Modeling – 205
1E Wear I – 206
1F Fluid Film Bearings I – 209
1H Metalworking I: Fluid Health, Safety & Longevity Session 1 – 211
1K Condition Monitoring I – 214

Commercial Marketing Forum I – Salon D/E

Keynote Address (10:30 am – Noon)
"Biological Principles and Biomimetics of Tribologically-Active Materials," presented by Stanislav N. Gorb – Grand Ballroom C/D

Lunch
Noon – 1:30 pm (on your own)

Exhibits and Student Posters
Noon – 5 pm – Exhibit Hall

Technical Sessions (1:30 – 6 pm)
2A Rolling Element Bearings II: Erwin V. Zaretsky Symposium – 202
2B Nanotribology II: Nanomaterials and Applications II – 203
2C Lubrication Fundamentals II – 204
2D Coatings I – 205
2E Wear II – 206
2F Fluid Film Bearings II – 209
2G Aerospace I – 210
2H Metalworking II: Fluid Health, Safety & Longevity Session 2 – 211
2I Engine & Drivetrain I – 212
2J Synthetics & Hydraulics I – 213
2K Condition Monitoring II – 214

Commercial Marketing Forum II – Salon D/E

Welcome Reception
6:30 – 8 pm – Grand Ballroom C/D

Tuesday, May 17, 2011

Speakers Breakfast
7 am – 7:45 am – Salon A-C

Registration
6:30 am – 5 pm – 2nd Floor Foyer

Exhibits and Student Posters
9:30 am – 5:30 pm – Exhibit Hall

Technical Sessions (8 am – Noon)
3A Rolling Element Bearings III – 202
3B Nanotribology III: Nanomechanics – 203
3C Lubrication Fundamentals III – 204
3D Ceramics/Composites I – 205
3E Wear/Seals Panel I – 206
3F Fluid Film Bearings III – 209
3G Biotribology II: Orthopaedic Tribology – 210
3H Metalworking III: Testing & Modeling Fluid/Additive Performance – 211
3I Engine & Drivetrain II – 212
3J Practical Lubrication I – 213
3K Condition Monitoring III – 214

Commercial Marketing Forum III – Salon D/E

President's Luncheon/Business Meeting
Noon – 2 pm – Grand Ballroom C/D
Daily Schedule at a Glance

All room numbers refer to Hilton Atlanta.

Tuesday, May 17, 2011/continued

Technical Sessions (2 – 6 pm)
4B Nanotribology IV: Nanolubricants I – 203
4C Lubrication Fundamentals IV – 204
4D Material Tribology I – 205
4F Fluid Film Bearings IV – 209
4G Biotribology III: Ocular Tribology – 210
4H Metalworking IV
Workpiece & Tool Effects on Metalworking – 211
4I Engine & Drivetrain III – 212
4J Practical Lubrication II – 213
Commercial Marketing Forum IV – Salon D/E

Wednesday, May 18, 2011

Registration
6:30 am – 5:00 pm – 2nd Floor Foyer

Speakers Breakfast
7 – 7:45 am – Salon A-C

Exhibits and Student Posters
9:30 am – Noon – Exhibit Hall

Education Courses (8 am – 5 pm)
Advanced Lubrication 301 – 302
Basic Lubrication 102 – 305
Metalworking – 309/310
NLGI Grease Course 101 – 303
Synthetic Lubricants 204 – 301

Technical Sessions (8 am – Noon)
5B Nanotribology V: Nanolubricants II – 203
5C Lubrication Fundamentals V – 204
5D Material Tribology II – 205
5E Seals I – 206
5F Tribotesting I – 207
5G Fluid Film Bearings V – 209
5H Gears I – 210
5I Surface Engineering I – 211
5J Environmentally Friendly Fluids I: EFF Applications – 212
5K Non-Ferrous Metals I: Biobased Lubricants Options for Industry – 213
5L Power Generation I – 214
Commercial Marketing Forum V – Salon D/E

Technical Sessions (1:30 – 6 pm)
6A Wind Energy I – 202
6C Lubrication Fundamentals VI – 204
6D Materials and Nanotribology Joint Session
In-Situ Techniques, Modeling and Multi-Scale Phenomena – 205
6E Seals II – 206
6F Tribotesting II – 207
6H Gears II – 210
6I Surface Engineering II – 211
6J Environmentally Friendly Fluids II: Panel Discussion
Biodegradability, Environmentally Friendly Certification for Biobased Lubricants in the US and Europe and USDA Bioacceptability – 212
6K Non-Ferrous Metals II: Surfaces and Chemicals – 213
6L Power Generation II – 214
Commercial Marketing Forum VI – Salon D/E

Thursday, May 19, 2011

Speakers Breakfast
7 – 7:45 am – Salon A-C

Registration
7:30 am – 2 pm – 2nd Floor Foyer

Technical Sessions (8 am – Noon)
7A Wind Energy II – 202
7B Contact Mechanics – Materials Tribology and Nanotribology Joint Session I – 203
7C Grease I – 204
7D Tribotesting III – 205
7E Seals III – 206
7F Surface Engineering III – 211
7G Environmentally Friendly Fluids III: Base Oils for EFF – 212

Technical Sessions (1 – 5:30 pm)
8A Wind Energy III – 202
8B Contact Mechanics – Materials Tribology and Nanotribology Joint Session II – 203
8C Grease II – 204
8E Seals IV – 206
8G Environmentally Friendly Fluids IV
Additive Studies in EFF – 212

Beverage Breaks are scheduled at 10 am and 3 pm daily.
NANOTRIBOLOGY V – NANOLUBRICANTS II
Session 5B • Room 203

Session Chair: A. Erdemir, Argonne National Laboratory, Argonne, IL
Session Co-Chair: J. W. Choo, Petronas Research Sdn Bhd, Selangor, Malaysia

8 – 8:30 am
Active Nanoparticles-Based Novel Lubricant Additives to Improve Energy Efficiency and Durability
D. Demydov, A. Suresh, NanoMech, Inc., Springfield, AR, A. Malshe, University of Arkansas, Fayetteville, AR

Systematic investigation of modified nanoparticles with additional functional groups that positively impact friction and wear behaviors will be discussed. These nanoparticles were specially designed for addition to oils/greases as additives to improve energy efficiency and durability. The temperature- and pressure-sensitive architecture of the nanoparticles enabled them to deliver a stable transfer tribofilm that reduced the extent of adhesive wear and solid-phase welding between sliding surfaces and provided better lubrication resulting in better reliability of mechanical integrity and lower energy consumption. The nanometric size allowed the entrapment of the particles at the asperity-to-asperity contacts and reducedasperity friction. The research efforts were focused on tribological testing of nanoparticles, improvement of their dispersion, and investigation of their behaviors in the presence of other additives in formulated oils/greases.

8:30 – 9 am
Experimental Studies on the Tribological Behaviour of Engine oil (SAE15W40) with the Addition of CuO Nanoparticles
R. Krishnan, M. Thottackad, P. Nair, National Institute of Technology Calicut, Calicut, India

Experimental studies on the influence of Copper oxide (CuO) nanoparticles utilised as an additive in lubricating oil (SAE15W40) under boundary lubrication conditions have been carried out using a pin-on-disc machine in accordance with ASTM D4052 standard. The variation of viscosity, coefficient of friction, wear and settling of nanoparticles has been studied as a function of particle concentration in the lubricant. Results show that the frictional force and specific wear rate decrease with an increase in concentration of nanoparticles, comes to a minimum at a specific concentration and then increases, showing the presence of an optimum concentration. With the increase in concentration of nanoparticles the kinematic and dynamic viscosities, and the flash and fire points are found to increase. Thus, the use of CuO nanoparticles as additives to a moderate level, is a very efficient means of improving the tribological properties of lubricating oils.

9 – 9:30 am
Nanodiamond-based Nanolubricants
M. Ivanov, Ural Federal University, Yekaterinburg, Russian Federation, S. Pavlyshko, Institute of Engineering, Science Ural Branch RAS, Yekaterinburg, Russian Federation, I. Denis, Ural Federal University, Yekaterinburg, Russian Federation, L. Petrov, SNEZINSK, Russian Federation, G. McGuire, O. Shenderova, International Technology Center, Raleigh, NC

Recently, certain nanomaterials in powdered and colloidal forms have emerged as potential anti-friction and wear additives to a variety of base lubricants. Highly purified detonation nanodiamonds (DND) with small aggregate sizes are a relatively new nanomaterial additive [1,2]. In the current work, we report results of the comparative analysis of the colloidal stability and tribological performance of DND-based additives as well as other commercial additives based on detonation soot, boron nitride and PTFE, nano-oxides (TiO2) and their combinations in mineral engine oil 15W40 (API CF/CC). Testing has been performed on these formulations using ring-on-ring (friction coefficient) and four ball tests (extreme pressure (EP) failure load and diameter of wear spot). Effects of different parameters of the formulations on their tribological properties will be discussed.


9:30 – 10 am
Experimental Analysis of Stable CuO Nanoparticle-Enhanced Lubricants
H. Ghaednia, R. Jackson, L. Fan, J. Khodadadi, Auburn University, Auburn, AL

The goal of this paper is to investigate the effect of different concentrations of nanolubricants on the friction and wear of a disk-on-disk test setup. The uniquely developed nanoparticles used in this study are CuO and have been proven to be exceptionally stable. Existing literature also suggests that CuO particles may be able to enhance lubricant performance in the boundary lubrication regime. A disk-on-disk test setup used in this study can measure the friction coefficient and wear using torque and load sensors. The tested samples are submerged in a small reservoir of the nano-lubricant. The wear and possible mending of the surfaces is evaluated by a surface profilometer and weighing the samples before and after testing. Experiments have been carried out for lubricants with different concentration of additives in various rotational velocity and loads.

10 – 10:30 am • Break

10:30 – 11 am
Single Asperity Friction and Temperature Dependent Properties of Boundary Lubricant Additive Films

Automotive lubricants are designed to form low friction, wear resistant layers through interactions between additives and the steel surfaces during tribological contact. Atomic force microscopy (AFM), which simulates single asperity sliding contacts, was used to investigate local properties of additive films. Samples were produced in a high frequency reciprocating sphere-on-flat geometry using single additive and multi-additive lubricant blends. Films generated from these tests were characterized using AFM. To simulate macroscale test environments for the single asperity friction measurements, the probe and sample were immersed in a polyolphtalic acid liquid. A heated stage was used to investigate local film properties at different temperatures. We will discuss the ways in which the nanoscale friction response can be related to macroscale friction behavior.
LUBRICATION FUNDAMENTALS V
Session 5C • Room 204

Session Chair: A. Spencer, Luleå University of Technology, Luleå, Sweden
Session Co-Chair: S. Pei, Theory of Lubrication and Bearing Institute, Shaanxi, China

8 – 8:30 am
Grid Generation in HL and EHL Using AMG
T. Lubrecht, M. Noutary, INSA Lyon, Villeurbanne, France, K. Venner, Twente University, Enschede, Netherlands

The solution of lubrication problems involves the solution of the Reynolds equation describing the fluid flow, integrated over the gap height. For certain cases the pressures are so high, that important elastic deformation occurs, and the fluid flow has to be coupled with an elastic deformation calculation. In those cases the lubricant viscosity varies as a function of the pressure as well. This paper uses Algebraic MultiGrid (AMG) to study the coarse grids generated, in order to optimise algorithm robustness and efficiency. A similar quest can be observed in the FEM solvers, which use non-structured grids in order to optimise the fine grid, and to limit the number of points used. The paper analyses two HL applications, the circular HL contact and the long elliptical contact. A third EHL application highlights the strong coupling in the high pressure zone.

8:30 – 9 am
A Simplified Mass-Conserving and Continuous Cavitation Model
N. Brunetiere, Institut Pprime, Futuroscope Chasseneuil cedex, France, J. Wang, Northwestern University, Evanston, IL

This paper presents a simplified continuous cavitation algorithm. The first cavitation model consisted in replacing negative pressure given by the incompressible Reynolds equation with a constant value generally equal to zero. However these models are not able to deal with film reformation. This was solved by the well-known JFO or Elrod's model with the use of a variable density in the cavitation area. The problems are that there are two distinct areas where the equations to be solved are different. More recent papers proposed to describe the fluid as a liquid contaminated with gas bubbles. Even if more realistic, these models are however complicated to implement. The model proposed in this work considers the fluid as a homogeneous mixture of an incompressible liquid and a perfect gas. For a low gas concentration, the model behaves as the JFO model; and for a high concentration value, the results are similar to those obtained with a gas flow model.

9 – 9:30 am
Collision and Surface Interactions of Particles in Lubricated Interfaces
C. Barbosa, Q. Wang, Northwestern University, Evanston, IL

Sliding surfaces in machines are usually lubricated with oil to reduce friction and wear. Ideally, the oil is clean and free from impurities. In reality, oils are often contaminated with dust, debris, and wear particles. These loose particles may damage the interface surfaces, causing overall failure of lubricated applications such as gears, roller bearings, and pistons. The present study attempts to shed light on the behavior of contaminant particles in shear flow using fundamental physical modeling. The contamination model numerically solves the Navier-Stokes equations for fluid-solid flows, incorporating both particle collisions and particle contact with the interface walls. These transient particle interactions enter the governing equations through an additional force term. Resulting pressure and velocity fields are presented and validated against existing theoretical and experimental studies in the literature.
Evolution of ZDDP-derived Reaction Layer Morphology With Rubbing Time

A. Naveira-Suarez, SKF Engineering and Research Centre, Nieuwegein, Netherlands, A. Tomala, Vienna University of Technology, Vienna, Austria, R. Pasaribu, SKF Engineering and Research Centre, Nieuwegein, Netherlands, R. Larsson, Lulea University of Technology, Lulea, Sweden, I. Gebeshuber, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Functional additives, particularly extreme-pressure and antiwear additives, in formulated oil will compete to adsorb and function in tribological contacts. A low polarity commercial base oil, poly-\(\alpha\)-olefin (PAO), blended with zinc dialkyl dithiophosphates has been studied. The tribological performance was evaluated using a ball-on-disc test rig under mixed rolling-sliding conditions in the boundary lubrication regime. An adapted in-situ interferometry technique was used to monitor the additive derived reaction layer formation. The thickness of the reaction layer evolves with rubbing until reaching a limiting thickness value of approximately 70nm. The evolution of the topography and mechanical properties of the ZDDP-derived reaction layer with rubbing time were studied using Atomic Force Microscopy. A constant roughening and hardening of the additive-derived layer with rubbing time is observed and related to the different tribological performance of the layer at different rubbing times.