REFEREE PUBLICATIONS IN JOURNALS AND BOOKS:
Citations total number > 8000; 18 papers with more than 100 citations; h-index = 41
(source: ISI Web of Knowledge, ResearcherID: A-3681-2010, February 2012)

2012

154. Daniel Hagleitner, Peter Jacobson, Sara Blomberg, Karina Schulte, Edvin Lundgren, Markus Kubicek, Jürgen Fleig, Frank Kubel, Christoph Puls, Andreas Limbeck, Herbert Hutter, Lynn A. Boatner, Michael Schmid, Ulrike Diebold
“Bulk characterization and surface properties of In$_2$O$_3$(100) single crystals”
Physical Review B, in press (February 2012)
FWF-FOXSI, ORNL

153. Ya. B. Losovyj, Shao-Chun Li, Natalia Lozova, Daniel Stellwagen, Ulrike Diebold, Lingmei Kong, Challa Kumar
“Evidence for p – d hybridization Au38 gold nanoclusters”
Journal of Physical Chemistry Letters, in press (February 2012)
Center for Atomic-Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number #DE-SC0001058

152. Jinke Tang, Gareth Parkinson, Ulrike Diebold, and Leszek Malkinski
“Surface and Reconstruction of Magnetic Oxides for Spintronic Applications”
Book Chapter in ’Magnetic Materials’, Intechweb, Edited by L. Malkinski et al., in press (October 2011)
EFRC, LaBOR-ITRS

151. Shao-Chun Li, Peter Jacobson, Shu-Lei Zhao, Xue-Qing Gong, and Ulrike Diebold
“Trapping Nitric Oxide by Surface Hydroxyls on Rutile TiO$_2$(110)”
Journal of Physical Chemistry C, in press (December 2011)
dx.doi.org/10.1021/jp209290a
DE-FG02-05ER15702

150. Peter Jacobson, Bernhard Stöger, Andreas Garhofer, Gareth S. Parkinson, Michael Schmid, Roman Caudillo, Florian Mittendorfer, Josef Redinger, Ulrike Diebold
“Disorder and Defect Healing in Graphene on Ni(111)”
dx.doi.org/10.1021/jz2015007
Intel Corp.; Austrian Science Fund (FWF) within the Wissenschaftskolleg WK04 and project I422-N16.

2011

“Water Mediated Reduction of the Fe$_3$O$_4$(001) Surface”
Journal of the American Chemical Society, in press (July 2011)
dx.doi.org/10.1021/ja203432e

148. S-C. Li, Y. Losovyj, U. Diebold
“Adsorption-site dependent electronic structure of catechol on TiO$_2$ anatase (101) surface”
Langmuir 27, (2011) 8600-8604
dx.doi.org/10.1021/la201553k

147. Gareth S. Parkinson, Zbynek Novotny, Peter Jacobson, Michael Schmid, and Ulrike Diebold
“A Metastable Fe(A) Termination at the Fe$_3$O$_4$(001) Surface”
Surface Science Letters, in press (March 2011)
doi:10.1016/j.susc.2011.05.018
146. Li-Min Liu, Shaochun Li, Hongzhi Cheng, Ulrike Diebold, and Annabella Selloni
“Growth and organization of an organic molecular monolayer on TiO$_2$: catechol on anatase (101)”
Journal of the American Chemical Society, 133 (20) (2011) 7816–7823
doi: 10.1021/ja200001r

145. Shao-Chun Li, Yaroslav Losovyj, Vinod Kumar Paliwal, and Ulrike Diebold
“Photoemission study of azobenzene and aniline adsorbed on TiO$_2$ anatase (101) and rutile (110) surfaces”
doi: 10.1021/jp202029a

144. Ulrike Diebold
“Photocatalysts: Closing the gap”, News & Views article
doi:10.1038/nchem.1019

“An in-vitro controlled release study of valproic acid encapsulated within a titania ceramic matrix”
doi:10.1016/j.apsusc.2011.03.079

2010

142. Philipp Scheiber, Alexander Riss, Michael Schmid, Peter Varga, and Ulrike Diebold
“Observation and Destruction of an Elusive Adsorbate with STM: O$_2$/TiO$_2$(110)”
Doi:10.1103/PhysRevLett.105.216101

141. Gareth Parkinson, Narasimham Mulakaluri, Yaroslav Losovji, Peter Jacobson, Rossitza Pentcheva, and Ulrike Diebold
“Adsorption-Induced Half-Metallicity at the Magnetite (001) Surface”
Doi: 10.1103/PhysRevB.82.125413

140. Maher Fathalla, Amelia Neuberger, Shao-Chun Li, Russell Schmehl, Ulrike Diebold, and Janarthanan Jayawickramarajah
“Straightforward Self-Assembly of Porphyrin Nanowires in Water: Harnessing Adamantane/β-Cyclodextrin Interactions”
Journal of the American Chemical Society (Communications), 132 (2010) 9966 - 9967
Doi:10.1021/ja1030722
(Paper highlighted in Nature Materials’ Research Highlights, vol. 9, August 2010)

139. Shaochun Li, U. Diebold, Li-Na Chu, and Xue-Qing Gong
“Hydrogen controls the dynamics of catechol adsorbed on a TiO$_2$(110) surface”
Science 328 (2010) 882 - 884
(DE-FG02-05ER15702, CHE-0715576)
(Paper highlighted in C&EN News)

138. U. Diebold
“Oxide Surfaces: Surface Science goes Inorganic” (News & Views article)
137. Ulrich Aschauer, Yunbin He, Hongzhi Cheng, Shao-Chun Li, Annabella Selloni, and Ulrike Diebold
“Influence of subsurface defects on the surface reactivity of TiO$_2$: water on anatase (101)”
*Journal of Physical Chemistry C*, 114 (2) (2010) 1278 - 1284
doi: 10.1021/jp910492b

136. Olga Dulub and Ulrike Diebold
“Preparation of a Pristine TiO$_2$ Anatase (101) Surface by Cleaving”
(Special Issue Honoring the Memory of Prof. T.E. Madey)
doi:10.1088/0953-8984/22/8/084014

135. *(Invited Review)* U. Diebold, Shao-Chun Li, and Michael Schmid
“Oxide Surface Science”
doi: 10.1146/annurev.physchem.012809.103254
CHE-0715576, DE-FG02-05ER15702, LaBoR-ITRS, Foreign sources

134. Shao-Chun Li and Ulrike Diebold
“Reactivity of TiO$_2$ Rutile and Anatase Surfaces towards Nitroaromatics”
*Journal of the American Chemical Society (Communication)*, 132 (2010) 64 – 66;
doi: 10.1021/ja907865t

2009

133. Erie H. Morales and Ulrike Diebold
“The polar ITO(001) surface: Surface structure and stabilization mechanism”

132. Shao-Chun Li and Ulrike Diebold
“Direction-dependent intermolecular interactions: catechol on TiO$_2$(110)-1x1”

131. Maher Fathalla, Shao-Chun Li, Ulrike Diebold, Alina Alb, Wayne Reed, and Janarthanan Jayawickramarajah
“Water-Soluble Nanorods Self-Assembled via Pristine-C60 and Porphyrin Moieties”
*Chemical Communications* 28 (2009) 4209 – 42w11

130. Yunbin He, Antonio Tilocca, Olga Dulub, Annabella Selloni, and Ulrike Diebold
“Local ordering and electronic signatures of submonolayer water on anatase TiO$_2$(101)”

129. Yunbin He, Wei-Kun Li, Xue-Qing Gong, Olga Dulub, Annabella Selloni, and Ulrike Diebold
“Nucleation and growth of 1D water clusters on rutile TiO$_2$(011)-2x1”
*Journal of Physical Chemistry C* (Letter), 13 (24) 10329-10332.

128. Yunbin He, Olga Dulub, Hongzhi Cheng, Annabella Selloni, and Ulrike Diebold
“Evidence for the Predominance of Subsurface Defects on TiO$_2$ Anatase (101)”

127. Shao-Chun Li, Jian-guo Wang, Peter Jacobson, Xueqing Gong, Annabella Selloni, and Ulrike Diebold
“Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO$_2$(110)”
*Journal of the American Chemical Society*, 131 (3) (2009) 980 - 984
126. Xue-Qing Gong, Navid Khorshidi, Andreas Stierle, Vedran Vonk, Claus Ellinger, Helmut Dosch, Hongzhi Cheng, Annabella Solloni, Yunbin He, Olga Dulub, Ulrike Diebold
Surface Science, 603 (2009) 138 - 144

2008

125. Erie H. Morales, Yunbin He, Ulrike Diebold, and Bernard Delley
“Surface structure of Sn-doped In$_2$O$_3$(111) thin films by STM”
New Journal of Physics, 10 (2008) 125030
[Paper listed a ‘Best of New Journal of Physics of 2008’]

124. P. Jacobson, Shao-chun Li, Chundao Wang, and U. Diebold
“Decomposition of catechol and carbonaceous residues on TiO$_2$(110): A model system for cleaning of EUVL optics”

123. Shao-Chun Li, Olga Dulub and Ulrike Diebold
“Scanning Tunneling Microscopy Study of a Vicinal TiO$_2$ Anatase Surface”

“Characterization of individual SnO$_2$ nanobelts with STM”

121. Khabibullah Katsiev, Matthias Batzill, Lynn A. Boutner, and Ulrike Diebold
“Defects and Pd Growth on the Reduced SnO$_2$(100) Surface”
Surface Science, 602 (2008) 1699 - 1704

120. (Invited) U. Diebold
“Wiggling its way out of surface polarity: Fe$_2$O$_4$ (100) (A Perspectives on the article: A combined DFT/LEED approach for compex oxide surface structure determination: Fe$_2$O (011)” by R. Pentcheva, W. Moritz, J. Rundgren, S. Frank, D. Schrupp, M. Scheffler”
Surface Science, 602 (2008) 1297 - 1298

119. Xue-Qing Gong, Annabella Solloni, Olga Dulub, Peter Jacobson, and Ulrike Diebold
“Small Au and Pt clusters at the anatase TiO$_2$(101) surface: behavior at terraces, steps, and oxygen vacancies”

118. P. Lascano, M. Batzill, U. Diebold, and P. Häberle
“Oxygen adsorption on Cu/ZnO (0001)-Zn”

2007

117. M. Batzill, E. H. Morales, and U. Diebold
“Surface Studies of Nitrogen Doped TiO$_2$”
Chemical Physics, 339 (2007) 36 – 43

116. O. Dulub, M. Batzill, S. Solovyev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold
“Formation of defects on TiO2 under electron bombardment: site-specific oxygen desorption”

Publication List, Diebold 2/21/12 4
“Are the surfaces of CrO$_2$ metallic?”

“Surface and Interface Properties of a-plane Mg$_x$Zn$_{1-x}$O (0 ≤ x ≤ 0.3) films”

113. K. Katsiev, M. Batzill, U. Diebold, A. Urban and B. Meyer
“Growth of One-Dimensional Pd Nanowires on the Terraces of a Reduced SnO$_2$(101) Surface”
Physical Review Letters, 98 (2007) 186102

112. (Invited Review) M. Batzill and U. Diebold
“Surface Studies of Gas Sensing Metal Oxides”
Physical Chemistry Chemical Physics, 9 (2007) 2307 - 2318
[Paper was promoted as a ‘hot article’ by PCCP]

2006

111. O. Dulub, C. Di Valentin, A. Selloni, and U. Diebold
“Structure, Defects, and Impurities at the Rutile TiO$_2$(101) Surface: A Scanning Tunneling Microscopy Study”

110. X.-Q. Gong, A. Selloni, M. Batzill, and U. Diebold
“Steps on TiO$_2$ Anatase (101)”

“Enhanced tunneling magnetoresistance and high spin polarization at room temperature in polystyrene coated Fe3O4 granular system through surface engineering”

“Tuning surface properties of SnO$_2$(101) by reduction”

107. M. Batzill, W. Bergermayer, I. Tanaka, and U. Diebold
“Tuning the chemical response of a gas sensitive material: Water adsorption on SnO$_2$(101)”

106. M. Batzill, and U. Diebold
“Characterizing solid state gas response by surface charging in photoemission: Water adsorption on SnO$_2$(101)”

105. M. Batzill, E.H. Morales, and U. Diebold
“Influence of Nitrogen doping on the Surface Properties of TiO$_2$ Anatase and Rutile”
2005

"Gas-phase-dependent properties of SnO$_2$ (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties"

103. (Invited) O. Dulub, M. Batzill, and U. Diebold
“Growth of Copper on Single Crystalline ZnO: Surface Study of a Model Catalyst”
"Topics in Catalysis", vol. 36 (1-4) (2005) 65 – 76

102. (Invited Review) M. Batzill and U. Diebold
“The Surface and Materials Science of Tin Oxide”

101. O. Dulub, B. Meyer, and U. Diebold
"Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface"
Physical Review Letters, 95 (2005) 136101

100. C. Di Valentin, A. Tilocca, A. Selloni, T.J. Beck, A. Klust, M. Batzill, Y. Losovij, and U. Diebold
“Water adsorption on reconstructed rutile TiO2(011)-(2x1): Ti=O double bonds and surface reactivity”

“Mixed dissociated/molecular monolayer of water on the TiO2(011)-(2x1) surface”

98. M. Batzill, J. M. Burst, and U. Diebold
“Pure and Co-doped SnO2(101) Films grown by MBE on Al2O3”

97. (Invited) Ulrike Diebold
“Dispersed Au Atoms, Supported on TiO2”
Surface Science Perspectives for Lee et al, Surface Science 578 (1-3) (2005) 1-3. [12]
Also published in the CSA Materials Research Database with METADEX

96. M.G. Cutrufello, U. Diebold, and R.D. Gonzalez
“Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts”

2004

95. M. Batzill, K. Katsiev, U. Diebold
“Tuning the oxide/organic interface: Benzene on SnO$_2$(101)“

94. B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, C. Wöll
"Partial Dissociation Water on the Surface of Zinc Oxide"

93. (Invited) U. Diebold, L. Vogel Koplitz, O. Dulub
"Atomic-Scale Properties of Low-Index ZnO Surfaces"

92. T.J. Beck, A. Klust, M. Batzill, U. Diebold, C. Di Valentin, A. Selloni
"Surface Structure of TiO2(011)-(1x2)"

91.  M. Batzill, A. M. Chaka, and U. Diebold
"Surface Oxygen Chemistry of a Gas Sensing Material: SnO2(101)"

2003

90.  G. Kresse, O. Dulub, and U. Diebold
"Competing Stabilization Mechanisms for the Polar ZnO(0001)-Zn Surface"

89.  I. Kuyanov, D. Lacks, D. R. Jennison, and U. Diebold
"Dynamics of TiO2(110) surface and step: Onset of defects in the ordered structure"

88.  L. Vogel Koplitz, O. Dulub, and U. Diebold
"STM study of Cu growth on ZnO(0001)-Zn and ZnO(0001bar)-O"

87.  (Invited) U. Diebold, N. Ruzycki, G.S. Herman, and A. Selloni
"One Step Towards Bridging the Materials Gap: Surface Studies of TiO2 Anatase" in
"Metallic Oxides Filling the Gap between Real Catalysis and Surface (eds. H. Idriss and M.A. Barteau),

86.  M. Batzill, K. Katsiev, and U. Diebold
"Surface morphologies of SnO2(110)"

85.  N. Ruzycki, G.S. Herman, L.A Boatner, and U. Diebold
"Scanning Tunneling Microscopy Study of the TiO2 Anatase (100) Surface"

84.  G.S. Herman, Z. Dohnalek, N. Ruzycki, and U. Diebold
"Experimental Investigation on the Interaction of Water and Methanol with Anatase-TiO2(101)"

83.  R. Marcus, U. Diebold and R. D. Gonzalez
"The Locus of Sulfate Sites on Sulfated Zirconia"

(rated ‘top-10 most popular articles’ in ScienceDirect - Elsevier, October-November 2003, December 2003: #3 in Materials Science, #6 in Physical and Theoretical Chemistry, #6 in Physics and Astronomy; rated ‘top 1% in the field’ according to Essential Science IndicatorsT’ by ISI Thompon, 2005; ‘top 25 hottest articles’ in Chemistry, July-Sept 2008, ScienceDirect-Elsevier)

81.  O. Dulub, U. Diebold, and G. Kresse
"Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn"

2002

80. M. Batzill, E.L.D. Hebenstreit, W. Hebenstreit, and U. Diebold
"Influence of Charged Subsurface Impurities on the Adsorption of Cl on TiO$_2$(110)"

79. M. Batzill, B. Katsiev, D.J. Gaspar, and U. Diebold
"Variations of the Local Electronic Surface Properties of TiO$_2$(110) Induced by Intrinsic and Extrinsic Defects"

(Invited) 78. U. Diebold
"Structure and Properties of TiO$_2$ Surfaces: A Brief Review"
Applied Physics A 76 (2002) 1 - 7

77. O. Dulub, L. A. Boatner, and U. Diebold
"STM Study of the Geometric and Electronic Structure of ZnO(0001)-Zn, (0001bar)-O, (101bar0), and (112bar0) Surfaces"
Surface Science 519 (3) (2002) 201 - 217


75. O. Dulub, L. A. Boatner, U. Diebold
"STM study of Cu growth on the ZnO (1 0 1bar 0) surface"

"Current-controlled Channel Switching and Magnetoresistance in an Fe3C Island Film Supported on a Si Substrate"

"A Combined Ab-initio and Experimental Study of Chlorine Adsorption on the Rutile TiO$_2$(110) Surface"

"The Adsorption of Chlorine on TiO$_2$(110) Studied with Scanning Tunneling Microscopy and Photoemission Spectroscopy"

2001

"Epitaxial Growth and Properties of Ferromagnetic Co-doped TiO$_2$ Anatase"
70. D.R. Jennison, O. Dulub, W. Hebenstreit and U. Diebold
"Structure of ultrathin TiO films, formed by the strong metal support interaction (SMSI), on Pt nanocrystals on TiO2(110)"

69. (Invited) U. Diebold
"The surface structure of TiO2(110)"

68. (Invited) U. Diebold
"Understanding Metal Oxide Surfaces at the Atomic Scale: STM Investigations of Bulk-defect Dependent Surface Processes"

"Study of Sulfur on TiO2(110) with Angle Resolved Resonant Photoemission"
Physical Review B, 64 (2001) 115418

"Bulk-defect Dependent Adsorption on a Metal Oxide Surface: S/TiO2(110)"

65. E.L.D. Hebenstreit, W. Hebenstreit, and U. Diebold
"Structures of Sulfur on TiO2(110) Determined by STM, XPS, and LEED"
Surface Science, 470 (3) (2001) 347-360

64. W. Hebenstreit. N. Ruzycki, G. S. Herman, and U. Diebold
"Scanning Tunneling Microscopy Investigation of the TiO2 Anatase (101) Surface"

"Characterization of the natural barriers of intergranular tunnel junctions: Cr2O3 surface layers on CrO2 nanoparticles"

"The Relationship between Bulk and Surface Properties of Rutile TiO2(110)"
Surface Reviews and Letters, 5/6 (2000) 613

61. E.L.D. Hebenstreit, W. Hebenstreit, and U. Diebold
"Adsorption of sulfur on TiO2(110) studied with STM, LEED and XPS: Temperature-dependent change of adsorption sites combined with O-S exchange"
Surface Science 461 (2000) 87 - 97

60. M. Li, W. Hebenstreit, U. Diebold, Alexei M. Tyryshkin, Michael K. Bowman, Glen G. Dunham, and M.A. Henderson
"The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals"

59. O. Dulub, W. Hebenstreit, and U. Diebold
"Imaging Cluster Surfaces with Atomic Resolution: The Strong Metal-Support Interaction State of Pt Supported on TiO2(110)"

58. B. Stanka, W. Hebenstreit, U. Diebold, and S.A. Chambers
“Surface Reconstructions of Fe3O4(001)"
Surface Science 448 (1) (2000) 49

57. M. Li, W. Hebenstreit and U. Diebold
"Surface Morphology Change of Oxygen Restructured TiO2(110) Surfaces by UHV Annealing: Formation of a 'Low-Temperature' (1x2) Phase"

(Invited) 56. M. Li, W. Hebenstreit, U. Diebold, M.A. Henderson, and D.R. Jennison
"Oxygen-Induced Restructuring of Rutile TiO2(110): Formation Mechanism, Atomic Models, and Influence on Surface Chemistry"
Faraday Discussions 114 (1999) 245


"Interaction of Molecular Oxygen with the Vacuum Annealed TiO2(110) Surface: Molecular and Dissociative Channels"

53. L.P. Zhang, J. van Ek and U. Diebold
"Spatial Self-Organization of Nanoscale Structure on Pt(111) Surface"

52. K.A. Shaw, E. Lochner, D.M. Lind, J.F. Anderson, M. Kuhn and U. Diebold
"Magnesium outdiffusion through magnetite films grown on magnesium oxide (100) substrates" (abstract)

"Evidence for Oxygen Adatoms on TiO2(110) Resulting from O2 Dissociation at Vacancy Sites"
Surface Science 412-413 (1998) 333 - 343

50. M. Li, W. Hebenstreit and U. Diebold
"Oxygen-Induced Restructuring of Rutile TiO2(110) Surface"

49. L.P. Zhang, M. Li and U. Diebold
"Characterization of Ca Impurity Segregation on the TiO2(110) Surface"
Surface Science 412/413 (1998) 242 - 251

48. U. Diebold, J. Lehman, T. Mahmoud, M. Kuhn, W. Hebenstreit, G. Leonardelli, M. Schmid and P. Varga
"Intrinsic Defects on TiO2(110)(1x1) Surface and Their Reaction with Oxygen: A Scanning Tunneling Microscopy Study"
Surface Science 411 (1998) 137 - 153

47. U. Diebold, W. Hebenstreit, G. Leonardelli, M. Schmid and P. Varga
"High Transient Mobility of Chlorine on TiO2(110): Evidence for Cannon-ball Trajectories of Hot Adsorbates"
Physical Review Letters 81 (2) (1998) 405-408

46. P.S. Robbert, H. Geisler, C.A. Ventrice, Jr., J. van Ek, S. Chaturvedi, J.A. Rodriguez, M. Kuhn, and U. Diebold
"Novel Electronic and Magnetic Properties of Ultra-Thin Chromium Oxide Films on Pt(111)"
Journal of Vacuum Science and Technology A 16 (3) (1998) 990

(Invited) 45. U. Diebold
"Specimen Treatment: Preparation of Metal Compound Materials (Mainly Oxides), " , book chapter in:

44. J.F. Anderson, M. Kuhn, and U. Diebold
"Epitaxially Grown Fe3O4 Thin Films - an XPS study"

43. U. Diebold and T.E. Madey
"TiO2 by XPS"

"H2S Adsorption on Chromium, Chromia, and Gold/Chromia Surfaces: Photoemission Studies"
Journal of Chemical Physics 107 (1997) 9146

41. M.Kuhn, J.F. Anderson, J. Lehman, T. Mahmoud, and U.Diebold
"Intrinsic Point Defects on a TiO2(110) Surface and Their Reaction with Oxygen: A Scanning Tunneling Microscopy Study"

40. J.F. Anderson, M. Kuhn, U. Diebold, K.Shaw, P. Stroyanov, and D. Lind
"Surface Structure and Morphology of Mg-Segregated Epitaxial Fe3O4(001) Films on MgO(001)"

39. L.P. Zhang, J. van Ek and U. Diebold
"Highly ordered nanoscale surface alloy formed through Cr-induced Pt(111) reconstruction"

38. J.F. Anderson, M. Kuhn, U. Diebold, K. Shaw, P. Stoyanov and D. Lind
"Surface Structure and Morphology of Mg-Segregated Epitaxial Fe3O4 Thin Films on MgO(001)"
Physical Review B 56 (15) (1997) 9902

37. L.P. Zhang, M. Kuhn, and U. Diebold
"The Epitaxial Growth of Ultrathin Films of Chromium and Its Oxides on Pt(111)"
36. L.P. Zhang, M. Kuhn, U. Diebold, and J.A. Rodriguez
"Thermal Stability of Ultrathin Cr Films on Pt(111)"

35. H.S. Tao, U. Diebold, N.D. Shinn, and T.E. Madey
"Decomposition of P(CH3)3 on Ru(0001): Comparison with PH3 and PCl3"
Surface Science 375 (1997) 257 - 267

34. L.P. Zhang, M. Kuhn, and U. Diebold
"Growth, Structure and Thermal Properties of Chromium Oxide Films on Pt(111)"
Surface Science, 375 (1997) 1-12

33. L.P. Zhang, M. Kuhn, and U. Diebold
"Growth and Structure of Ultrathin Cr Films on Pt(111)"
Surface Science, 371 (1997) 223

32. U. Diebold, J.F. Anderson, K.-O. Ng, and D. Vanderbilt
"Evidence for the Tunneling Site on Transition Metal Oxides: TiO2(110)"

"Surface Segregation of Silicon in platinum(111)"

"Radiation-induced decomposition of PF3 on Ru(0001)"

29. U. Diebold and N.D. Shinn
Surface Science, Volume 343 (1995) 53-60

(Invited) 28. U. Diebold, J.-M. Pan, and T.E. Madey
"Ultrathin Metal Films on TiO2(110): An Overview"

27. J. Mayer, E. Garfunkel, T.E. Madey, and U. Diebold
"Titanium and reduced titania overlayers on titanium dioxide (110)"

"A Search For Surface Alloy Formation in Faceting Induced by Monolayer Metal Films: Pd/W(111) and Ni/W(111)"
Surface Science, Volume 322 (1995) 221 - 229

25. U. Diebold, H.-S. Tao, N.D. Shinn, and T.E. Madey,
"Electronic Structure of Ultrathin Fe films on TiO2(110) Studied with Soft X-ray Photoelectron Spectroscopy and Resonant Photoemission."

24. J.-M. Pan, B.L. Maschhoff, U. Diebold, and T.E. Madey
"Local Structural Study of Ultrathin Metal Films on TiO2(110) using ARXPS and MEED"
in: "The Structure of Surfaces IV", p. 328 editors: X. Xie, S. Y. Tong, M.A. van Hove
(World Scientific, Singapore 1994)
"The Influence of Pre-adsorbed K on the Adsorption of PF3 on Ru(0001) Studied by Soft X-ray Photoelectron Spectroscopy"  
Journal of Chemical Physics 100 (7) (1994) 5301 - 5313

22. H.S. Tao, U. Diebold, T.E. Madey, and N.D. Shinn  
"Surface chemistry of PH3, PF3 and PCl3 on Ru(0001)"  
Surface Science 312 (1994) 323 - 344

(Invited) 21. P.Varga and U.Diebold  
"Sputtering of Metals and Insulators with Hyperthermal Singly and Doubly Charged Rare Gas Ions"  
in "Low Energy Ion-Surface Interactions" ed. J.W. Rabalais,  
in "Advances in Ion Chemistry and Physics" J. Wiley & Sons Ltd. (1994) 355 - 385

20. U. Diebold and T.E. Madey  
"Suppression of Electron Induced Positive Ion Emission by a Molecular Overlayer: Ion-Molecule Charge Exchange at a Surface"  
Physical Review Letters 72 (7) (1994) 1116

"Growth of ultrathin transition metal oxide films on a reducible oxide surface"  
Proeedings of the Symposium of Surface Science, Les Arcs, Savoie, Francs 1994

"Ultrathin reactive metal films on TiO2(110): growth, interfacial reaction and electronic structure of chromium films"  
Surface Science 295 (1993) 411- 426

17. T.E. Madey, U. Diebold, and J.-M. Pan  
"The growth and structure of ultrathin metal films on TiO2(110)"  
in “Adsorption on Ordered Surfaces on Ionic Solids and Thin Films”,  
E. Umbach and J.-J. Freund (eds.),  

"Structural study of ultrathin metal films on TiO2 using LEED, ARXPS and MEED"  
Surface Science, 291 (1993) 381 - 394

15. U. Diebold, J.-M. Pan, and T.E. Madey  
"Ultrathin metal films on TiO2(110): Metal overlayer spreading and surface reactivity"  

14. U. Diebold, J.-M. Pan, and T.E. Madey  
"Growth mode of ultrathin copper overlayers on TiO2(110)"  

"Structure and kinetics of electron beam damage in a chemisorbed monolayer: PF3 on Ru(0001)"  
In: "Desorption Induced By Electronic Transitions, DIET V",  

12. U. Diebold and T.E. Madey
"Electron stimulated desorption (ESD) of ammonia on TiO2(110): The influence of substrate defect structure"

11. J.-M. Pan, B.L. Maschhoff, U. Diebold, and T.E. Madey
"The interaction of water, oxygen and hydrogen with TiO2(110) surfaces having different defect densities"
Journal of Vacuum Science and Technology A 10 (1992) 2470 - 2476

10. U. Diebold and T. E. Madey
"Adsorption and electron stimulated desorption of NH3/TiO2(110)"
Journal of Vacuum Science and Technology A 10 (1992) 2327 - 2335

"Sputtering of LiF(100) with low energetic Ne+ and Ne2+ ions"

8. U. Diebold, D. Wutte, and P. Varga
"Electronic Effect in Low Energy Sputtering of Metals and Insulators"
Proceedings of the 6th International Symposium on Surface Science, Obertraun, Austria, 1991

7. U. Diebold and P. Varga
"Desorption and secondary ion production during bombardment of CO/Ni(111) with Ne+ and Ne++ ions at very low impact energies"

6. U. Diebold, D. Wutte, and P. Varga
"Sputtering with low energy rare gas ions (10 - 500 eV)"
Proceedings of the 5th International Symposium of Surface Science, La Plagne/Savoie, France, 1990, p.177 - 180

5. U. Diebold, W. Möller, and P. Varga
"Low-energy ion impact desorption cross sections of carbon monoxide from Ni(111)"
Surface Science 248 (1991) 147 - 157

4. P. Varga, U. Diebold, and D. Wutte
"Electronic effects in low-energy ion sputtering of LiF"

3. U. Diebold and P. Varga
"Influence of the primary ion charge state on secondary ion production: bombardment of CO/Ni(111) with Ne+, Ne2+, Kr+ and Kr2+ at low impact energies"

2. U. Diebold and P. Varga
"Determination of cross sections for CO desorption from Ni(111) induced by Ar ions at very low impact energy"
Vacuum 41 (1990) 210 - 212

1. U. Diebold, A. Preisinger, P. Schattschneider, and P. Varga
"Angle resolved electron energy loss spectroscopy on graphite"
Surface Science 197 (1988) 430 - 443