The Pt(100) quasihexagonal reconstruction: A comparison between STM data and EMT simulation calculations

G. Ritz, M. Schmid, P. Varga, A. Borg*, and M. Rønning+

Institut für Allgemeine Physik, Technische Universität Wien, A-1040 Wien, Austria
*Department of Physics, The Norwegian University of Science and Technology, N-7034 Trondheim, Norway

+Department of Industrial Chemistry, The Norwegian University of Science and Technology, N-7034 Trondheim, Norway

Phys. Rev. B 56 (1997) 10518-10525

The interpretation of scanning tunneling microscopy (STM) data is usually limited to first layer effects, but with increasing resolution of the STM images deeper layer effects may also become visible in the top layer corrugations. We have investigated the clean Pt(100) surface, which is known to be pseudohexagonally reconstructed and for which there is some evidence for a second layer reconstruction. The big unit cell makes it difficult to investigate the deeper layers by traditional methods like low energy electron diffraction (LEED). We have, therefore, used a "finger print" technique to compare highly resolved STM data of the clean Pt(100) surface to effective medium theory simulation calculations in order to determine the geometric structure of the second atomic layer. We were able to show that STM can be sensitive to deeper layer effects and that excellent agreement could only be achieved for an unreconstructed second layer. The simulation results also agree well with the corrugations determined by LEED whereas the maximum corrugation amplitude is higher than previously derived from helium diffraction measurements.

Corresponding author: M. Schmid (schmid< encoded email address >).

Users with online access to Phys. Rev. B can load the article from the publisher.

Part of this work is on display in the IAP/TU Wien STM Gallery (see the reconstructions page).