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1 Introduction 

Diatoms are single-celled organisms with rigid parts in 
relative motion at the micro- and nanometer length 
scales. This makes them interesting for nano- and 
microtechnological applications [1-6]. Some diatom 
species form colonies comprising many cells in form of 
long chains [7]. Rutilaria philipinnarum is an example 
of such a species. R. philipinnarum is a fossil colonial 
diatom thought to have lived in inshore marine waters 
[8]. In this species, the single diatoms connect by 
linking spines and by a complex siliceous structure 
termed the periplekton what can be seen in a simple 
drawing in Figure 1. The spines are arranged in an 
elliptic way around the periplekton in the middle. On 
one hand these structures keep the cells together, but on 
the other hand also keep distance between the cells so 
that there is still some fluid between the cells. Hence the 
shape of the spines allows expansion of the chain to a 
certain maximum length and compression to a minimum 
[4].  

 
Figure 1: A schematic drawing of the linking structures 
of R. philipinnarum is shown. On top of the last diatom 

the periplekton in the center of the diatom-body and 
ring-like arranged long spines are illustrated. They are 

supposed to keep distance between the cells in a 
variable way between a minimum and 

maximum distance. 
 

Such elaborated linking mechanisms as shown in a 
schematic drawing in Figure 1, inspired the question 
what would happen to such a diatom colony subjected 
to water flow. A diatom chain subjected to fluid flow is 
soon being moved as a whole with the flow. However, 
in situations where the direction or velocity of flow 
changes, the inertia of the whole diatom chain prevents 
immediate acceleration according to new flow 
conditions. During that situation of acceleration, water 
flows through the gaps between the single cells creating 
relative motion between the chain and water. 

To analyze the problem, the method of Computational 
Fluid Dynamics (CFD) is used. CFD is one of the 
branches of fluid mechanics that uses numerical 
methods and algorithms to solve and analyze problems 
that involve fluid flows. The governing equations that 
need to be solved consider the conservation of mass, 
momentum, pressure and turbulence [9]. Indeed, these 
equations are so closely coupled and difficult to solve 
that it was not until the advent of modern computers in 
the 1960s and 1970s that they could be resolved for real 
flow problems within reasonable timescales. A basic 
introduction to fluid mechanics for the interested reader 
is given by CHORIN and MARSDEN [10]. Numerical 
methods used to solve the governing equations in fluid 
mechanics can be found in LEVEQUE [11].  

The computer simulations presented here shall inspire 
biologists working on diatoms to perform experiments 
validating the results, and thereby initiate 
interdisciplinary research involving groups from 
technical and biological backgrounds [12]. 

2 Materials and Methods 

As a basic start to prove the principle a simple two-
dimensional finite element model of a diatom chain was 
created. This model chain does not contain linking 
spines or periplekton or exact surface conditions of the 
diatoms, but solely concentrates on primary aspects 
concerning the boundary conditions of multiple gaps. 
The problem investigated here has remote similarity to 
the circumfluence of the river Thames on the pylons of 
the medieval London Bridge (Figure 2). 
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Figure 2: Medieval London Bridge. Copyright free 

material from 
http://www.gutenberg.org/files/19699/19699-

h/images/bridges_6.png 
 

Of course the length scale clearly differs: the diatom 
cell size is assumed to be 140 �m * 34 �m, and that the 
distance between the cells can achieve a value from 
10 �m to 20 �m. The colony is assumed to be 
comprised of single units of 10 cells each that are 
repeated endlessly. This simplifies calculations on the 
one side and on the other neglects the influence of the 
ends of the chain completely 

 
Figure 3: The white boxes counted from A1 to A10 

symbolize the model diatoms. The model diatoms have 
one degree of freedom of movement, namely in ± y 

direction, indicated by the arrows in cells A5 and A6. 
The x- and y-axes of the coordinate system used are 

given on the right. The size of each model diatom cell is 
140 μm * 34 μm, the distance between them is 15 μm. In 
the gaps between the boxes water flows in the direction 
marked with the bold arrows. The brighter area in the 
middle of the figure represents the “unit cell” of the 
endlessly repeated sequence, repeated units being 

indicated by the darker areas to the left and the right. 
 

The chain of model-diatoms is surrounded by water. In 
this simple isothermal model (i.e. no temperature 
change takes place), undisturbed fluid flow is allowed 
for between the single cells. The cells do not move 
actively, and are solely moved by the water. Fluid flow 
models need inlet and outlet conditions. The inlet fluid 
velocity is assumed to be from 0.01 m/s to 1 m/s, what 
was varied in decimal powers. Because the quality of 
the results does not change for the range of velocities 
only the result for 0.1 m/s is presented here. As an outlet 
condition an averaged static pressure of one bar is 
assumed, because the diatoms live near the ocean 
surface. The Reynolds number (Re) is a dimensionless 
number that gives a measure of the ratio of inertial 
forces to viscous forces and quantifies the relative 
importance of these two types of forces for given flow 
conditions [13].The Reynolds number can be written as 
Re = � * v * L / �, with � the density (~1000 kg/m³), the 
velocity v (max. 1m/s) and � the dynamic viscosity 
(1518 μPa/s) of the fluid whereas L is a characteristic 
length and assumed to be the length of a diatom 
(L = 140 μm). Reynolds numbers are also used to 

characterise two different flow regimes: laminar or 
turbulent flow. The laminar flow occurs at low 
Reynolds numbers with Re < 2300, where viscous 
forces are dominant. Turbulent flow occurs at high 
Reynolds numbers Re > 2300 and is dominated by 
inertial forces, which tend to produce random eddies, 
vortices and other flow fluctuations [14]. Because of the 
small scales of the Diatoms the Reynolds numbers for 
such problems are very low for a wide range of flow 
conditions and therefore the fluid is characterised by a 
laminar behaviour. 

For solving this boundary value problem the software 
package ANSYS CFX 11.0 is used. As with various 
other commercial software packages it uses the finite-
volume-method, a standard technique where the 
equations are solved on discrete control volumes. The 
models consist of up to 308283 volumes. This mesh of 
elements was created in ANSYS ICEM CFD 11.0.  

3 Results 

In the simulations steady state solutions (i.e. a 
computational result that does not change anymore with 
time) are calculated for two different arrangements of 
the model diatom chain (see Figure 3). There are also 
two different possible directions of the fluid to flow: 
along the long axis of the chain in y-direction or across 
the chain through the gaps in x-direction. All other 
possible fluid flows are simple superpositions of these 
two cases. The first case, when the fluid flows along the 
chain, only reveals a simple elongation of the chain. 
This is the reason why this case is not investigated any 
further. 

On the other hand, fluid flow orthogonal to the long axis 
of the chain is worth examining in more detail: The first 
pre-set configuration investigated has equidistant model 
diatom cells (i.e. all model diatom cells have the same 
distance to their neighbouring cells, Figure 4). This 
represents a balanced position of the diatoms in the 
chain. The second pre-set configuration investigated has 
alternating distances of the model diatom cells (dmin 
between A1 and A2, dmax between A2 and A3, dmin 
between A3 and A4, dmax between A4 and A5, and so 
on, with dmin being 10 μm and being dmax 20 μm). This 
arrangement is one single example for an imbalanced 
condition of the chain and is shown in Figure 5. The 
resulting acting forces grow proportionally with the 
velocity but do not change in direction with the different 
velocities investigated (0.01 m/s – 1 m/s). Therefore, the 
influence of different incoming flow velocities turns out 
to be not significant for the specific behaviour 
investigated. Even though the acting forces in flow 
direction (x-direction, see Fig. 3) are about a hundred 
times larger than the forces orthogonal to the flow 
direction (y-direction, see Fig. 3) for the equidistant 
state, mainly results for the forces orthogonal to the 
flow direction are presented. The reason for this is that 
the solution for the forces in x-direction is trivial: the 
whole chain of model diatoms accelerates in the 
direction of the flow. 
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Figure 4: The model diatoms (white boxes) are in the 
equidistant state, i.e. the distances between the single 

model diatoms are all the same. In this state, the 
stationary solutions of the computer simulation are 

velocities - coloured from red (fast) to blue (slow) in a 
range from 0.1 m/s to 0.11 m/s - that are not the same in 

all the gaps between the model diatoms, although the 
distances are the same. This result is caused by 

interference phenomena (similar to patterns on a river 
after a bridge with equidistant pylons). 

Forces on the cells strongly correlate with the static 
pressure of the surrounding fluid, which again 
corresponds to the surrounding fluid velocity. For 
inviscid fluids Bernoulli’s principle states that an 
increase in speed of the fluid occurs simultaneously 
with a decrease in pressure [14]. 

3.1 Equidistant model diatoms 
Figure 4 shows the result for an inlet flow-velocity of 
0.1 m/s in positive x-direction. The white boxes 
represent the model diatoms. The fluid velocity is 
coloured from blue (slow) to red (fast).The remarkably 
small range of velocity in this Figure was chosen to 
clarify the following statement: Even though all gaps 
between the cells are equal, water velocity differs (see 
Figure 4). This behaviour correlates to the forces acting 
on single diatoms (see Table 1), which includes diatoms 
counted from A1 to A10 shows the specific forces 
acting on each diatom in x- and y-direction. Note that 
the ends (A1 and A10) are not the real end of the chain, 
because the chain itself has infinite length (periodic 
boundary conditions). So these ends only build the 
bounds of an endlessly repeated sequence. To assure the 
same height of all model diatoms in the simulated chain, 
the first (A1) and the last (A10) diatom are modelled 
with half the height (because of the periodic boundary 
conditions). The velocity distribution in the gaps shows 
interferential phenomena (as can be seen from the 
different sizes of the red coloured areas. The velocities 
in the gaps between the model diatoms are not equal for 
every gap even though all the gaps are the same (see 
Figure 4). 

Table 1: Forces acting on model diatom cells numbered 
from A1 to A10 for incoming flow conditions of 0.01 m/s 
in positive x-direction. Due to symmetric boundary 
conditions the first and the last diatom of the chain (A1 
and A10) are only designed half so that forces in x-
direction are also half of the actual value 

Diatoms 
Force FAi in y-

direction [10-11 N]
Force FAj in x-

direction [10-9 N]

A1 830.60 12.62 

A2 0.52 25.24 

A3 -5.77 25.24 

A4 1.41 25.24 

A5 3.30 25.24 

A6 3.46 25.24 

A7 1.68 25.24 

A8 -6.10 25.24 

A9 0.59 25.24 

A10 -829.50 12.62 

Forces: As can be seen from Table 1, the force acting on 
diatom A1 is positive (FA1 = 830.60 *10-11 N) and the 
force acting on diatom A2 is also positive 
(FA2 = 0.52 *10-11 N). This means that – if the model 
diatoms were allowed to move freely – A1 would move 
in positive direction and A2 would move – but less, 
because the absolute value of the force is smaller – also 
in positive direction. Therefore, the gap between these 
two model diatom cells would decrease, since FA2 - FA1
(0.52 *10-11 N - ( 830.60 *10-11 N)) gives a negative 
value for the increase of the gap. The force acting on 
diatom A3 is negative (FA3 = -5.77 *10-11 N), and the 
force on model diatom A4 is positive (FA4 = 1.41 *10-

11 N), and forces the cell into positive y-direction. 
Therefore, the gap between these two model diatom 
cells would increase, since FA4 - FA3 gives a positive 
value. In this way, the changes in gap widths (if the 
model diatoms were allowed to move freely) can readily 
be calculated. The tendency if one performs these 
calculations (with data from Table 1) is that the single 
gaps nearly alternately increase and decrease. However, 
as the simulation shows, attraction and repulsion do not 
always alternate, but there are some cases where more 
than two neighboured gaps act the same way: e.g. the 
gaps A1/A2 and A2/A3 decrease, also the gaps A4/A5 
and A5/A6 do not alternate but both increase. The 
reason for the remarkable increase of force on A1 and 
A10 is unknown (see Table 1). Perfect alternating 
increase and decrease of neighboured gaps would 
represent the highest possible frequency of an 
oscillatory system, as it is proposed to be. This special 
behaviour of the chain, that a distance balanced state 
want to become unbalanced, was not expected. This 
leads to the second case investigated, paired model 
diatoms. 
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3.2 Paired model diatoms 
In the second case investigated, the distance between 
the cells is fixed and alternates between the minimum 
(10 �m) and the maximum distance (20 �m) our model 
diatoms can achieve. Again, there is an inlet flow of 
0.1 m/s in the positive x-direction. Also in this case, 
interference phenomena in the velocity distribution 
appear, but this time they are negligible compared to the 
effect that the velocity in the larger gaps is much faster 
than the velocity in the smaller gaps (see Figure 5). 

Figure 5: The model diatoms (white boxes) are in the 
paired state, i.e. the distances between two model 

diatoms are fixed and are alternately small or large. A 
stationary solution of the computer simulation is 

calculated. Velocity - coloured from red (fast) to blue 
(slow) in a range from 0.1 m/s to 0.7 m/s - is 

distinctively larger in the large gaps compared to the 
velocity in the small gaps. This velocity distribution 
leads to higher static pressures in the small gaps. 

Furthermore, the cells are forced to reduce the distance 
of the larger gaps while enlarging the smaller ones. 

 

Therefore the static pressure is much lower in the larger 
gaps and acting forces tend to readjust the chain into 
balanced equidistant state. Table 2 shows the acting 
forces again in two different directions. The alternating 
algebraic sign for forces directed in y-direction easily 
shows the described behaviour, if one performs the 
calculation for gap-distance as above. The fact that an 
imbalanced state tends to establish the balanced state is 
however a more conceivable effect than the first case 
investigated 

4 Conclusions, Discussion and Outlook 

This work is a numerical simulation. Experimental 
verification of the results is highly desirable. Even 
though there is a high grade of convergence in the 
simulations, numerical failure can never be excluded. 
The following interpretation only refers to the results 
from the numerical approximations as described above. 

The stationary result of the equidistant state forces the 
chain into imbalance of distance between cells. The 
stationary result of a non-equidistant state forces into 
the equilibrium again as shown in the second exemplary 
solution. 

Table 2: Forces acting on diatoms numbered from A1 to 
A10 for incoming flow conditions of 0.01 m/s in positive 
x-direction. Due to symmetric boundary conditions the 
first and the last diatom of the chain (A1 and A10) are 
only depicted as halves, so that forces in x-direction are 
also half of the actual value.   

Diatoms 
Force in y-

direction [10-9 N]
Force in x-direction 

[10-9 N]

A1 74.36 22.28 

A2 9.99 50.36 

A3 -9.70 50.46 

A4 10.29 50.44 

A5 -10.34 50.46 

A6 10.26 50.46 

A7 -10.25 50.44 

A8 10.22 50.48 

A9 -10.45 50.39 

A10 -74.46 17.65 
 

This leads to the conclusion that there may be an 
additional oscillatory movement to the expected 
acceleration in the flow direction during the time of 
relative motion between chain and fluid. It is a 
behaviour that is comparable to the so called flutter 
mechanism in turbine flows [15], even though the flutter 
mechanism is mainly described as an aero-elastic 
phenomenon and therefore relevant in gas-flows. In the 
examples described here, it would be an example of 
hydroelasticity that is concerned with the motion of 
deformable bodies through liquids [16]. Oscillatory 
movement increases the advective diffusion through the 
surface of the diatoms and therefore increases nutrient 
supply in a homogeneous nutrient solution [17]. 

The question how a linked diatom chain gets the signal 
to build end valves is a question   long discussed in the 
diatom community [18-21]. The computer simulation 
results presented here indicate various velocities of the 
water in the gaps and variance in the forces acting on 
the model diatom cells. This might provide a needed 
“signal” for building end valves (KOOISTRA pers. 
comm. 2008). 

A comparison of these results with a non-turbulent 
(laminar) solution with the same boundary conditions 
shows the same effect but with forces a tenth of the 
strength as when using the k-�-turbulence method. This 
leads to the proposition that turbulence modelling plays 
a mayor role for solving such problems close to reality. 
The existence of a similar interference in a laminar 
calculation also shows that the modelled effects are not 
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only turbulence phenomena, but inherently have to do 
with inner elastics of water. More detailed modelling 
approaches as well as experimental corroboration of the 
modelling results are needed to verify if real diatom 
chains exposed to conditions as described above also 
exhibit the oscillatory movement that results from this 
modelling study. 
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