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ANTARCTICA. TIME OF CHANGE. MIREYA MASO 

The Diatoms of Antarctica and their Potential Roles in Nanotechnology 

Richard Gordon, Andrzej Witkowski, Ille Christine Gebeshuber & Claire S. Allen 

Biological nanotechnology and man-made nanotechnology currently still differ 
substantially (Abdel-aal & Ille C. Gebeshuber, 2010) . Whereas in biological systems, 
intricate hierarchical structures are built with integrated functionalities on various 
length scales (from the nanometer scale to the micrometer scale to the millimeter scale), 
engineers still struggle to control shape or functionalities in their nanomachinery. We 
are just at humble beginnings of the development of hierarchical engineered structures. 
Diatoms, with their amazing structures and functionalities, with their ability for cell
division once a day or even more often, and with their ability to produce silica even in 
Antarctica, where the water temperature is below O°C, can serve as inspiration in human 
technology, yielding sustainable materials, structures and processes. Diatoms have 
become fascinating to the industrial world over the past two decades primarily because of 
their ability to create solid structures of many types at a wide range of size scales. Some 
of them have motors with no moving parts that run at 99.9% efficiency (Gordon, 1987), 
and all produce oil from which we could tun our cars in a sustainable way (Ramachandra 
et aI., 2009). Antarctic diatoms accomplish these feats under conditions that are extreme, 
such as low temperature, at high salinity embedded in or attached to ice (Janech et 
aI., 2006; Krell et aI., 2008), and often under high ultraviolet radiation from the sun 
(Helbling et aI., 1996; Skerratt et aI., 1998; Hernando & Ferreyra, 2005; Wulff et aI., 
2008). They survive the Antarctic winter for 6 months with little or no light (Wulff et aI., 
2008) and many remain viable even when frozen into sea ice or buried in sediment, with 
some able to germinate after many years (Davis, 1972; Zgurovskaya, 1977; Hollibaugh, 
Seibert & Thomas, 1981; Ligowski, Godlewski &A. Lukowski, 1992». Antarctic 
diatoms thus rightfully belong to those microorganisms that are called extremophiles 
(Sterrenburg et aI., 2007). As we shall show, these properties may prove useful in 
applications of diatom nanotechnology. 

Diatoms are both the cause and possible solution to the present global warming 
crisis, though global warming has at least one positive side, as farming has contributed 
to it for 5000 years and may have postponed the next ice age (Ruddiman, 2005). Those 
of us who put up with or escape Canadian winters sometimes schizophrenically yearn 
for global warming. The role of diatoms is quite simple: much of the crude oil that we 
take out of the ground comes from diatoms, and can still be seen within the shells of 
diatoms long dead. If we were to switch to live diatoms, perhaps living in solar panels and 
genetically engineered to secrete their oil, or even gasoline (petrol) itself (Ramachandra 
et aI., 2009), then there would be no net increase in carbon dioxide: they would take up 
as much as we put into the atmosphere on burning their oil. Furthermore, there would 
be no need to switch to new kinds of automobile engines, such as electric or hydrogen 
based. 

Nanotechnology has come to mean all things tiny that we manufacture. One Nobel 
Prize winning physicist, Robert B. Laughlin, calls this infatuation the production of 
"nanobaubles, fascinating and beautiful structures that develop spontaneously at small 
scales but have no known use except as entertainment . . .. While our knowledge of the 
nanoscale is exploding almost incomprehensibly at the moment, nearly all of it is deeply 
unimportant .... The idea that nanoscale objects ought to be controllable is so compelling 
it blinds a person to the overwhelming evidence that they cannot be" (Laughlin, 2005). 

The ordinary approach to nanotechnology is to create it by lithography (Sargent, 
2005; Dupas, Houdy & Lahmani, 2007; Reisner, 2008; Gebeshuber, 2009) or chemical 
reaction, often biochemical (Goodsell, 2004; Rehm, 2006; Renugopalakrishnan & Lewis, 
2006; Gazit, 2007; Papazoglou & Parthasarathy, 2007). Here our focus is on diatom 
nanotechnology, in which one uses living organisms to grow desired nanostructures 
rather than trying to build them ourselves: 

"Diatoms ... generate nanostructured silica microshells (frustules) with thousands 
of species-specific morphologies. Sustained reproduction of a particular diatom species 
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can yield enormous numbers of frusrules with similar 3D morphologies. Such intricate, 
genetically precise, and massively parallel 3D self-assembly under ambient conditions 
lies well beyond the current capabilities of synthetic micro- and nanofabrication" 
(Weatherspoon et aI., 2007). 

In an offhand way, one of us started the field of diatom nanotechnology when 
invited to give his first talk at an engineering conference, and not knowing what to 
say, decided to suggest that diatoms could make things engineers wanted (Gordon & 
Aguda, 1988). It has since burgeoned into a large effort by many people, tying together 
biologists, called diatomists, with industrialists (Gordon, Sterrenburg & Sandhage, 2005; 
Kroth et aI., 2007; Allison et aI., 2008; Kroger & Poulsen, 2008; Bozarth, Maier & 
Zauner, 2009). The plans are wide sweeping, including "everything but the kitchen sink" 
in miniature form: 

''Acruator, antenna, bar, bearing, cantilever, capsule, catalyst, cone, cube, cylinder, 
die, diffraction grating, disk, fiber, filler, filter, funnel, gear, heat exchanger, hinge, 
honeycomb, insulator, lens, lever, light pipe, magnet, membrane, mesh, mirror, mixer, 
motor, needle, nozzle, piston engine, plate, prism, pulley, pump, reactor, refraction 
grating, relay, rocket, rotor, sensor, separator, sieve, sphere, spiral, spring, substrate, 
switch, syringe, tag, tetrahedron, tetrakaidecahedron, transducer, tube, turbine engine, 
valve, wedge, wheel" (Gordon, 2010). 

One might agree with Laughlin, because this perhaps $100 million investment so far 
has yet to yield a single commercial product (Gordon, 2010) . But perhaps in time it will. 
Certainly, diatoms figure in an art form little appreciated by the art world: the careful 
arrangement of diatoms to produce patterns and pictures only visible with a microscope 
(Nagy, 2002; Matthias Burba, 2008; Kemp, 2009). Diatoms, including those from 
Antarctica, have appeared on postage stamps (Edlund, 2009). 

Diatom nanotechnology is intimately tied to the field of morphogenesis, in which 
one tries to figure out how organisms get their shapes (i.e., morphology). This is one 
of the basic, unsolved problems of biology. One of the refreshing aspects of all this 
attention to diatoms is that, in order to manipulate them, most industrialists and 
their scientist collaborators believe it would help if we could figure out how diatoms 
actually create their silica structures. Thus basic science is getting an enormous boost, 
and many pieces of the puzzle have been found, if not yet put together into a coherent 
mechanism (Gordon, 2008). So playing with all these "nanobaubles" just might lead to 
breakthroughs in our understanding of life in general: "Lots of money is sloshing around, 
and great fortunes are being made and lost .... The allure of travelling in such a wild and 
lawless place is the ever-present possibility of making a serendipitous discovery of great 
importance" (Laughlin, 2005). 

The basics of diatom morphology have already been covered in this book (Scharek, 
2010). Diatom assemblages of the Antarctic and the Austral Islands are unique in many 
respects. Firstly they inhabit either sea ice or cold to very cold waters (Medlin & Priddle, 
1990). Secondly their habitats are subject to very strong winds. The latter phenomenon 
results in mixing of the assemblages. Hence marine and likewise terrestrial assemblages 
are composed of both marine and freshwater forms (Witkowski, Riaux-Gobin & 
Daniszewska-Kowalczyk, 2010). In addition the whole area determined as Southern 
Ocean is isolated from surrounding areas by a strong hydrologic barrier - the Polar Front. 
The existence of the Polar Front significantly reduces the exchange of the organisms 
with the other more northern geographic regions. Under such harsh environmental 
conditions peculiar diatom assemblages have developed composed of diatom species that 
are endemic for the Antarctic (Southern Ocean) as outlined by the Polar Front. Included 
in this assemblage are numerous genera, but the most interesting are Fragilariopsis 
and Eucampia. They are indicative either for marine ice or for conditions in the water 
column. Due to this they also play very important roles as indicators of climate change 
(Zielinski & Gersonde, 1997). 

The diatom assemblages we studied originated from fairly deep stations (up to 50m). 
They were high in species number and predominantly composed of benthic species, 
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FIGURE 7 

FIGURE 6. A girdle band 0.4 mm in diameter from a "giant" centric Antarctic diatom, Arachnoidiscus sp. It is decorated with much smaller, adhering 
Cocconeis pennate diatoms shown in the closeup. Scale bars are 0 .3 mm and 0.03 mm, respectively. 

FIGURE 7. The valve view of a giant diatom Trigonium arcficum 0.5 mm wide, and a Coscinodiscus asteromphalus 0.25 mm wide, found in Antarctic 
waters, the latter showing an array of pores, which could be used for a nanofilter. 
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FIGURE 8 

FIGURE 9 

FIGURE 8. The two valves of Corethron at either end of a long cylinder of girdle bands. The valve to the right has a set of long spines attoched to 
the rim, the valve to the left has similar spines, but alternating with them is a series of finer hooked spines. Scale bar 50 ~m . Image used with 
permission, © R.M. Crawford and F. Hin., from (Gebeshuber & Crawford, 2006). 

fiGURE 9. A cell of Corethron with the old valve (Vl) to the left showing the base of a number of long spines and the new valve (V2) to the right. 
In the new valve, the spines are still oriented parallel to the cylinder of the girdle-bonds. Scale bar 20 m. Image used with permission, © R.M. 
Crawford and F. Hin., from (Gebeshuber & Crawford, 2006). 
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FIGURE 10 

FIGURE 10. Surface view of a valve similar to that in the right in Figure 8, showing insertion of the long spines at the edge of the valve. Scale bar 10 
I'm. Image used with permission. (© R.M. Crawford and F. Hinz, from Gebeshuber & Crawford, 2006). b) Closeup. 
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FIGURE 11. "Filtration applications of diatoms. la) A filtration column is packed with diatom frustules. Lorge molecules will pass through the 
column relatively quickly, while smaller molecules will be able to enter the frustules via their pores and will thus be eluted at a much lower rate. 
(b) Biosensor filter: in a typical application (e.g. monitoring blood glucose), receptor molecules are contained (either free or fixed to the support, 
as shown here) within a chamber copped by a diatom frustule. Small molecules may enter via the pores in the frustule and bind to the receptors, 
eliciting a signal. Larger molecules capable of disrupting the signal (e.g. proteases) are prevented from entering the chamber." From (Parkinson & 
Gordon, 1999) with permission from Elsevier. 

R. GORDON, A. WITKOWSKI, I. C. GEBESHU8ER, C. S. ALLEN 89 



ANTARCTICA. TIME OF CHANGE. MIREYA MAS6 

though planktonic and ice diatoms were also observed. This is only possible due to very 
high transparency of the water column allowing deep penetration of sunshine. So far 
little is known about ecology and species composition of Antarctic littoral/sublittoral 
(near shore) diatom assemblages. Research effort is mainly focused on sea ice and 
planktonic diatoms as they play important roles in primary production of the Antarctic 
waters. Hence numetous studies were focused on survival strategies of Antarctic diatoms. 
Interestingly some of the planktonic diatoms form wintering stages (Fryxell, 1994) while 
others survive in sea ice (Cunningham & Leventer, 1998). 

This imbalance in attention to sea ice and planktonic diatoms on one hand and 
marine benthic diatoms of the Antarctic on the other is difficult to understand as the 
latter forms offer much more diverse and novel morphologies, which are possible to 
observe nowhere else in the world's ocean. This provides exciting research opportunities 
first of all for diatomologists dealing with biodiversity and taxonomy (new species and 
higher taxa) and to nanotechnologists (new ultrastructures). 

Let's now have a look at some diatom parts, to see why engineers are intrigued with 
their potential. We'll use examples from our own work. A simple one is the circle or 
hoop, which comes from the silica girdle bands found around most diatoms. What is 
remarkable in this example is the high degree of perfection of circularity, as if it were 
"precisely machined" (Figure 6), but we have no lathes that small. Of course, a ring is 
but a component in a potential nanomachine, but that is the current state of the art: 
no one has yet assembled any device with moving diatom parts. A nanorobot (nanobot) 
consisting of a diatom shell propelled by bacteria motors has been proposed for carrying 
drugs inside our bloodstream, and one might imagine the optical diffracting powers of 
diatom shells to be put to work in arrays fancier than movable micromirrors (Link & 
Zimmerman, 2007). 

Diatom morphologies are amazing not only because of their geometric variety and 
perfection but also because of their size range. Antarctic diatoms range in size from just 
1 to 2 microns in length and width (e.g. Fragilariopsis cylindrus, Figure 5) to 3 to 4 mm 
in length and only a few microns wide (Thalassiothrix spp., Trichotoxon spp. and Entopyla 
spp.) and up to several hundred microns diameter (Arachnoidiscus spp.: Figure 6, and 
Coscinodiscus spp.: Figure 7 and Figure 5). Even within a single species the size ratio of 
individuals can be almost an order of magnitude (lOx)! 

Some of the largest diatoms are found in Antarctic waters (Figure 7) . In Antarctica, 
diatom distribution is affected most profoundly by the seasonal progression of sea ice. 
This is especially true for large diatoms, because pore spaces within the ice are small and 
diatoms larger than approx. 30-40 microns are easily crushed in the freezing process. 
As such, the largest diatoms in Antarctica must survive beneath the sea ice - deep in 
the water column, in benthic and epibenthic habitats, or in the permanently open 
ocean beyond the sea ice. The 'giant' benthics also seem to be more cosmopolitan 
than the planktonic diatoms, with many occupying littoral regions in temperate and 
tropical latitudes as well as the icy coasts of Antarctica. Arachnoidiscus japonicus is more 
commonly found in the tropical Pacific and has only recently been found in Antarctica 
(AI-Handal & Wulff, 2008). Its size range in Antarctica appears to exceed descriptions 
elsewhere and may reflect an algal version of the 'gigantism' seen in other Antarctic 
marine organisms (Woods et aI., 2009)! 

The common Antarctic diatoms species Corethron criophilum and C. pennatum are 
exquisite examples for integrated mechanics on the micro- and nanoscale (Figures 3-5). 
Their structure and function is of high interest to nanotechnologists (Gebeshuber & 
Crawford, 2006; Gebeshuber, 2009). C. criophilum and C. pennatum exist as single cells 
(i.e., they do not form colonies) with two different valves per cell (heterovalvy). One 
hemispheric valve has a set of long spines that are attached to the valve at a series of 
sockets on the rim of the valve (Figure 8 right). The other valve has similar spines, but 
alternating with them is a series of finer hooked spines (Figure 8 left). The spines can 
move to a degree in the socket, but the position in which they are found in the mature, 
independent cell is not where they are formed. The process of new valve formation in 
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these diatoms is complicated (Crawford & Hinz, 1995; Crawford, Hinz & Honeywill, 
1998). The spines are formed along with the new valves, within, and protected by 
the cylinder of the two sets of girdle bands (Figure 9). During the cell division cycle, 
the cell elongates greatly, forming very many girdle bands as it does so, thus creating 
a long space between the two sibling cells when they are complete. This space can 
accommodate the formation of the long spines. When the new cells are mature, they 
expand and pull the girdle cylinder away from the base of the spines and allow the 
spines to swing out to adopt their final position (Figure 10). In doing this they move 
past a click-stop that must be so structured as to ensure: a) that there are two positions 
in which the base of the spines can lie, b) that the first of these, lying beneath the 
girdle-band cylinder is unstable so that when released by the girdle cylinder it moves 
to the second position, c) that the final position of all three spine arrays is stable and 
d) that the orientation of all three arrays of spines differs (Richard Crawford, personal 
communication). This unique case of a click-stop mechanism in rigid micromechanical 
parts is a 'best practice' example for the connection of structure with function in 
nature. 

The Antarctic diatom Corethron serves as inspiration for micro- and nanotechnology, 
where it is of paramount importance to come up with novel ideas on how to fabricate 
three-dimensional structures from two-dimensional structures, by unfolding and 
subsequently fixing them (Gebeshuber & Crawford, 2006; Gebeshuber et aI., 2009). 
Imagine flat Corethron-inspired MEMS and NEMS that would unfold, expand and fix 
themselves in their predetermined final three-dimensional structure on demand! 

One common characteristic of diatom shells is their fairly uniform pores (Figure 2). 
One potential use for these is to act as a selective fiiter, screening out larger molecules and 
letting smaller ones through (Figure 11). 

Diatoms, due to their intricate structure at many size scales, have a huge surface area 
for their size. This makes them sensitive to tiny amounts of adsorbed gas molecules. Since 
their optical properties change when they adsorb gases, some experimental detectors of 
low levels of dangerous gases have been made from them (Lettieri et aI., 2008) . Various 
molecules can be bound to the surface of diatom shells, where they can react with other 
molecules and form a whole "lab on a diatom" (De Stefano et aI., 2009). 

One of the most advanced applications of diatoms is to turn their silica shells into 
other substances without changing their shapes. This is done by cooking them at high 
temperatures in a vapor containing atoms other than silicon. In this situation, when a 
silicon atom vaporizes from the shell, it is rapidly replaced by the alternative atom, so 
that the whole structure remains intact, not quite the Star Trek Replicator, but getting 
close (Drum & Gordon, 2003). The process is analogous to altering a brick building 
one brick at a time, replacing, say, each clay brick by a gold brick. The forces between 
adjacent atoms provide the "mortar". With this approach, ceramic (Dickerson et aI., 
2005) and metallic alloy (Sandhage & Bao, 2008) "diatoms" have been made. Silica is 
Si(oH)4' and a similar process removes the oxygen and hydrogen atoms, leaving pure 
silicon (Si). An all silicon "diatom" can possibly be used to create new three dimensional 
computers (Bao et aI., 2007). Diatoms can also be used as molds to make nanostructures 
of other substances (Losic et aI., 2007). 

Genetic engineering of diatoms has already started with the complete sequencing 
of DNA in a few species (Genome Project, 2009b, c, a; Karthick, 2009) and direct 
manipulation of the genome (Kroth, 2007; Gordon et aI., 2009). 

The inherent bias towards benthic habitats means that Antarctica's giant diatoms are 
not hindered by heavy silicification and as such are far more robust than their tropical 
counterparts (eg. Ethmodiscus spp.). Whether or not large, heavily silicified shells have 
significant oil production by the cells is not yet known, though large Antarctic diatoms 
may playa role in global cooling through carbon sequestration (Pollock, 1997), to which 
they significantly contribute (DiTullio et al., 2000; Grigorov, Pearce & Kemp, 2002). 
Let's then return to the problem of a sustainable source of gasoline, which might be based 
on Antarctic diatoms. 
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The USA leads in gasoline consumption with an average of 10 barrels per person per 
year (StateMaster.com, 2009). Suppose we could genetically engineer giant Antarctic 
diatoms to secrete say 25% of their volume in oil per day, while living inside specially 
designed solar panels (Ramachandra et al., 2009). The largest Antarctic diatoms are 
nearly all epibenthic ones and the largest centric is Arachnoidiscus spp. (typically 0.4 to 
1 mm) . The volume of one giant 2 millimeter wide diameter subtropical and tropical 
species Ethmodiscus rex or E. gazellae cell is about 4 cubic millimeters (Villareal et aI., 
2007), so a big Antarctic Arachnoidiscus would about 1 cubic millimeter. Ten barrels 
converts to 1.64 billion cubic millimeters (1.64x109 mm3). This volume of oil could 
then possibly be produced by 20 million cells in the course of a year. A double layer 
of 1 million Arachnoidiscus cells of 1 mm diameter would occupy 10 square meters. 
While these cells have large vacuoles occupying perhaps 99% of their volume (Woods 
& Villareal, 2008), other diatoms do not and can have up to 85% of their volume as 
oils or lipids (Ramachandra et aI., 2009). Furthermore, we might be able to shrink 
vacuole sizes by deliberate selection (Gordon, 1996). This then gives a rough calculation 
of how much area would need to be covered by gasoline secreting solar panels for each 
person. The production per cell might be less, bur the number of layers of cells could 
be more, and there is a wide range of size of cells and approximately 100,000 species 
of diatoms (Fourtanier & Kociolek, 2009) to choose from, so if we could get diatom 
secretion of their oil to work, it might be practical. The advantages of solar panels are 
that they may be placed on roof tops, walls, deserts, and other generally unproductive 
areas, don't compete with farming for food, and may be widely distributed, eliminating 
transportation costs to deliver gasoline. 

In summary, diatom nanotechnology may prove to be both a profitable and 
fundamental endeavor. Antarctic diatoms (Wynn Williams, 1996), including those 
in inland lakes (Jones, 1996; Laybourn-Parry & Pearce, 2007), come from a unique 
environment that is high in biodiversity (Brandt, 2005), and may be well worth our 
increased attention. 
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