

Proceedings of the

Sixth Plant Biomechanics Conference

November 16th – 21st, 2009, Cayenne, French Guyana, France

Bernard Thibaut Editor

Scientific Committee

Joseph Gril,	CNRS - University Montpellier II, Montpellier, France;
Meriem Fournier,	AgroParis Tech, Nancy, France;
Bruno Moulia,	INRA - University Blaise Pascal, Clermont-Ferrand, France;
Julian Vincent,	Centre for Biomimetic and Natural Technologies, University of Bath, UK;
George Jeronimidis,	Centre for Biomimetics, Department of Engineering, University of Reading, UK;
Hanns-Christof Spatz,	Institute für Biologie III, University of Freiburg, Germany;
Thomas Speck,	Plant Biomechanics Group, Botanic garden, University of Freiburg, Germany;
Frank Telewski,	Michigan State University, East Lansing, MI, USA;
Geoffrey Daniel,	Swedish University of Agricultural Science Sweden;
Lennart Salmén,	STFI-Packforsk, Stockholm, Sweden;
Hiroyuki Yamamoto,	Laboratory of Bio-Material Physics, Nagoya University, Japan;
Bernard Thibaut,	CNRS – UMR EcoFoG, French Guyana, France

Preface

This 6th Plant Biomechanics conference is hosted by French Guiana, a tiny part of the huge Amazonian forest, on the Guyana shield. French Guiana was a place where tree biomechanics research begins in the seventies in a close cooperation between French and Japanese scientists. Many participants to this conference made part of their work here in French Guiana and it is a pleasure to make the other discover this wonderful tropical rain forest.

As for the former conferences there will be papers dealing with all kind of plants and very different mechanical solutions at whole plant, organ or cell level. There is also a strong emphasis on useful material coming from plants and on bio-inspired solutions for engineering.

Some participants, old friends of the beginning, were actors of the five other PBM, but many young scientists and PhD come for the first time and this is good news for the future of our community. It is a pity that some of us cannot participate this time because of fund restrictions due to the economic crisis but they keep in contact and we will send them the proceedings of this conference.

I want to mention all the national or regional organizations that help us for the funding and the organization of PBM 2009, namely, AgroParisTech, CIRAD, CNES, CNRS, INRA, DRRT Guyane, IESG, IRISTA, IUFM, PUG, Région Guyane and UAG.

I want also to give a very special thank to Laetitia and Julien Ruelle. Without the energy of Laetitia this conference will not have been possible and without the expertise of Julien, these proceedings will not be under your eyes.

Thanks also to all the colleagues and PhD students who were there when needed for so many help in such an adventure.

And last, thanks to the members of the scientific committee for their reactivity and efficient reviewing of the text here after.

Have a good reading.

Bernard THIBAUT Directeur de recherche au CNRS Directeur de l'UMR Ecofog

Contents (titles are hyperlinks to papers)

1. Physics of growth	1
Anisotropic and isotropic growth of the apical meristem Yves Couder, Francis Corson, Olivier Hamant, Arezki Boudaoud and Jan Traas	2
Leaf inclination and light interception in the sunflower (Helianthus annuus L.). Importance of the petiole's mechanical and structural properties Luis F. Hernández	3
High-resolution kinematics of gravitropic movement reveals an oscillatory dynamics. A key for efficient performance? Renaud Bastien, Stéphane Douady and Bruno Moulia	11
Mechanosensing quantitatively controls diameter growth and level of expression of PtaZFP2 mechanosensitive gene in poplar Ludovic Martin, Catherine Coutand, Nathalie Leblanc-Fournier, Mélanie Decourteix, Catherine Lenne, Bruno Moulia and Jean-Louis Julien	19
Contact Mechanics at the Insect-Plant Interface Stanislav N. Gorb	27
The influence of the wall contact angle on gas bubble behaviour in xylem conduits under tension and possible consequences for embolism Wilfried Konrad and Anita Roth-Nebelsick	32
Cytoskeletal control of cellular shape and directional growth in pollen tubes Firas Bou Daher and Anja Geitmann	40
2. Modelisation	46
Modelling collapse of xylem pine needles: effects of tracheid geometry and tracheids' arrangement George Jeronimidis, Catherine Coutand, Nicole Brunel and Hervé Cochard	47
Multi-scale modeling for moisture transport in wood Dominique Derome, Wolfgang Zillig and Jan Carmeliet	53
A scaling law reveals the control of tree vibration modes through tree architecture and branch allometry Mathieu Rodriguez, Emmanuel de Langre and Bruno Moulia	59
Free Coiling in Tendril-Bearing Plants Annika Eberle, Kenny Quinn and Lori Bassman	67

Evaluation of growth stress profiles in tree trunks: comparison of experimental results to a biomechanical model	
Delphine Jullien, Tancrède Alméras, Miho Kojima, Hiroyuki Yamamoto and Pierre Cabrolier	75
Comparing shapes for stress homogenization in nature and technique Iwiza Tesari and Claus Mattheck	83
Modelisation of the trunk daily diameter variation during wet season in a neotropical rain forest of French Guiana Yamina Aimene, Clément Stahl, Damien Bonal and Bernard Thibaut	89
Modelling surface growth for tree biomechanics Thomas Guillon and Thierry Fourcaud	95
3. Plant and fluid mechanics	100
Plant mechanical interactions with air and water Emmanuel de Langre and Frédérick Gosselin	101
Resistance of red mangrove (Rhizophora mangle L.) seedlings to extraction. Sophie D. Boizard, and Stephen J. Mitchell	110
Plant motion in heterogeneous landscapes: a coupled flow-tree simulation study Yves Brunet, Sylvain Dupont, Pascal Roux and Damien Sellier	116
Mechanical advantage of epidermal cells over stomatal guard cells, estimated from transient changes of leaf-level stomatal conductance for Anu Sober and Julia Shilina	121
Tapering of vascular elements from roots to distal shoots in Pinus sylvestris, Picea abies and Betula pendula Anna Lintunen and Tuomo Kalliokoski	122
Modelling waving crops using Large-Eddy Simulation Sylvain Dupont, Frédérick Gosselin, Charlotte Py, Emmanuel de Langre, Pascal Hémon and Yves Brunet	131
Continual modeling of water uptake by plant roots Alexander A. Stein, S.A. Logvenkov and E.N. Yudina	140
Wave propagation in the conducting systems of plants Natalya N.Kizilova	148
The mirror effect on xylem and phloem radial conduction Veronica Angyalossy, Guillermo Angeles and Carolina Madero-Vega	156

Diversity of hydraulic and biomechanical wood properties in 22 tropical rainforest species of French Guiana Juliette Boiffin, Sandra Patino, Meriem Fournier, Sandrine Isnard	
and Tancrède Alméras	163
The Effects of Modified Lignin Monomer Ratios on Hydraulic Conductivity and Resistance to Embolism in Hybrid Poplar (P. tremula x P. alba) Jeffrey A. Pierce, Frank W. Ewers, Jameel Al-Haddad, and Frank W. Telewski	164
Hydraulic conductance of developing shoots of aspen Anu Sober and Julia Shilina	168
4. Biomechanics aspects of plant development	169
Study of the ultrafast trap of an aquatic carnivorous plant Philippe Marmottant, Olivier Vincent and Catherine Quilliet	170
Effect of fracture behaviour of crystalline plant waxes on insect pad contamination Elena V. Gorb, Feodor M. Borodich and Stanislav N. Gorb	176
Biomechanics of fern spores discharge: the sporangium opening Xavier Noblin, Jared Westbrook, Nicolas Rojas, Médéric Argentina and Jacques Dumais	179
A Biomechanical Study on Bursting Plant Fruit and Its Optimality Jiro Sakamoto, Yasuhiro Endo and Eichiro Kinosita	187
Plant leaves as attachment devices: an experimental approach Friederike Gallenmüller, Georg Bauer, Kirk-René Kubinski, Dagmar Voigt Stanislav Gorb and Thomas Speck	194
The Unfolding Mechanism of Seed Capsules in Stone Plants Matthew J. Harrington, Friedrich Ditsch, Peter Fratz1, Christoph Neinhuis and Ingo Burgert	202
Mechanics and structure of the attachment system of English Ivy (Hedera helix L.) Björn Melzer, Tina Steinbrecher, Robin Seidel, Oliver Kraft, Ruth Schwaiger and Thomas Speck	205
Adhesive properties of tentacles of the protocarnivorous plant Roridula gorgonias and the mechanism of adhesion prevention	
in the mutualistic miridbug Pameridea roridulae Dagmar Voigt and Stanislav Gorb	211
Biomechanics of isolated cherry tomato fruit cuticles during growing Laura España, Eva Domínguez, Jesús Cuartero and Antonio Heredia	212

5. Micromechanics	217
Making shapes - mechanical principles of plant cell growth Anja Geitmann	218
Towards nanomechanical characterization of developing wood cell walls at different maturation steps Karl Bytebier, Olivier Arnould, Richard Arinero,	
Bruno Clair and Tancrède Alméras	228
Stress of cellulose network in tension wood is induced shortly after cellulose deposition	226
B. Clair, T. Almeras, G. Pilate, D. Jullen, J. Sugiyama and C. Riekel	230
Silica distribution in wheat awns to improve dispersal Rivka Elbaum	244
A new interpretation of plant cell growth mechanics: Loss of stability and cell wall stress-relaxation.	
Philip M. Lintilhac and Chungfang Wei	251
Structural and mechanical design of tissue interfaces in monocotyledonous plants	
Markus Rüggeberg, Thomas Speck and Ingo Burgert	259
Comparison of Cell Wall Mechanical Properties of some Arabidopsis thaliana Mutants Pohert Polin Jacomy Pritcherd and Colin Thomas	265
Robert Faini, Jerenny Fritenald and Comi Filomas	203
Impact of selective extractives removal on micro and macromechanical properties of woody hemp core (chènevotte) Rahime Bag, Johnny Beaugrand, Patrice Dole and Bernard Kurek	273
Is interlocked grain an adaptive trait for tropical tree species in rainforest?	
Pierre Cabrolier, Jacques Beauchêne and Bernard Thibaut	279
Ultrasonic device for the imaging of green wood Loïc Brancheriau, Philippe Gallet, Patrice Thaunay and Philippe Lasaygues	285
Occurrence of the gelatinous cell wall layer in tension wood of angiosperms Julien Ruelle, Bruno Clair, Nick Rowe and Hiroyuki Yamamoto	289
6. Biomechanics of trees	296
Origins of abnormal behaviors of gelatinous layer in tension wood fiber:	
A micromecnanical approach Hiroyuki Yamamoto, J. Ruelle, Y. Arakawa, M. Yoshida, B. Clair and J. Gril	297

306
314
322
328
335
343
349
250
350
356
357
367
374

Shape Optimization – Biomimetic or Naturemimetic? Claus Mattheck and Roland Kappel	382
Abstraction of plant movements for deployable structures in architecture J. Lienhard, S. Poppinga, S. Schleicher, T. Masselter, T. Speck and J. Knippers	389
Plant stems as building material for living plant constructions Ferdinand Ludwig, Gerd de Bruyn, Marc Thielen and Thomas Speck	398
Impact resistance of hierarchically structured fruit walls and nut shells in view of biomimetic applications Robin Seidel, Andreas Bührig-Polaczek, Claudia Fleck and Thomas Speck	406
Biomimetics in architecture – inspiration from plants Petra Gruber	412
8. Ecology and Evolution	420
Geometry of folds, geometry of leaves Etienne P. Couturier, Sylvain Courrech Dupont and Stéphane Douady	421
Modelling secondary growth stresses in recent and fossil plants Tom Masselter and Thomas Speck	431
Chiral structure in petiole vascular bundles Derek G. Gray and Joshua G. Lucate	439
Ontogenetic variations in morphology and attachment strength of permanent attachment pads of species of Parthenocissus Tina Steinbrecher, Oliver Kraft, Thomas Speck, Björn Melzer and Ruth Schwaiger	444
Using vegetation to stabilize steep slopes in Southern China: root biomechanics as a factor in the choice of species Murielle Ghestem, Alexia Stokes, Kunfang Cao, Wenzhang Ma and Jianlei Xie	450
Multi-stemming and mechanics of trees and shrubs growing along avalanche paths François-Xavier Mine, Alexia Stokes and Loic Brancheriau	456
Drag of red mangrove (Rhizophora mangle L.) seedlings in water. Sophie D. Boizard and Stephen J. Mitchell	463
Evolution of the mechanical architecture during domestication in manioc (cassava) Nick Rowe, Léa Ménard, Bruno Clair, Gilda Mühlen and Doyle McKey	469

Wood chemical and mechanical responses to modified lignin composition in upright and inclined hybrid poplar Jameel Al-Haddad, Shawn Mansfield and Frank W. Telewski	477
Fire resistance of trees and bark heat insulation as concept generators for biomimetic insulation and fire-stopping materials Georg Bauer, Thomas Speck, Andreas W. Liehr and Olga Speck	482
On the characterization of mechanical properties of porous and heterogeneous bio- and bioinspired materials Klaus G Nickel	487
Posture control of Fagus silvatica L and Acer pseudoplatanus L. in natural stands after thinning Paul Igor A. Hounzandji, Meriem Fournier, Thiéry Constant	
and Catherine Collet	488
9. Mechanics of biomaterials	489
Nonlinear elastic and moisture dependent behavior of wood: a first attempt to an adequate thermomechanical modeling Jan Carmeliet, Robert Guyer and Dominique Derome	490
The viscoelastic properties of some Guianese woods J. Paul McLean, Olivier Arnould, Jacques Beauchêne and Bruno Clair	498
Influence of the extractives of selected extraneous woods on the equilibrium moisture content - chemical and physical properties Peter Niemz, Tamás Hofmann, Levente Albert, Tamás Rétfalvi and Rudolf Popper	505
Structural and Functional Differences Among Transgenic Hybrid Poplar Lines with Varying Lignin Contents Barbara Lachenbruch, Steven L. Voelker, Frederick C. Meinzer and Steven H. Strauss	514
Yew wood: Axial elasticity, structure-function relationships and possible biomechanical background Daniel Keunecke and Peter Niemz	522
Soil property effects on the natural durability, extractive content and colour of teak (Tectona grandis L.f) wood in Togo Adzo Dzifa Kokutse, N. Amusant, N. Boutahar and G. Chaix	529
Mechanical damping of wood as related to species classification: a preliminary survey Iris Brémaud, Kazuya Minato and Bernard Thibaut	536

About structural determinants of the diversity of vibration properties	
of ten tropical hardwoods	
Jana Dlouhá, Tancrède Alméras, Bruno Clair and Joseph Gril	543

Author index

Exploring the innovation potential of biomimetics for novel 3D micro- and nanoelectromechanical systems (MEMS and NEMS)

Gebeshuber I.C. 1,2,3, Stachelberger H. 2 and Majlis B.Y. 1

¹ Universiti Kebangsaan Malaysia, Malaysia; ² University of Technology Vienna, Austria; ³ Austrian Center of Competence for Tribology, Austria

Abstract

Science currently goes through a major change, with biology gaining increasing importance. A new Leitwissenschaft that can be called "Biological Physics" is evolving. Biomimetics, i.e., technology transfer from biology to engineering, is especially promising in MEMS development because of the material constraints in both fields. Biomimetic concepts such as integration instead of additive construction, optimization of the whole instead of maximization of a single component feature, multi-functionality instead of mono-functionality and development via trial-and-error processes can also be applied by engineers not at all involved in biology.

A novel way to describe the complexity of biological and engineering approaches depending on the number of different base materials is proposed: Either many materials are used (*material* dominates) or few materials (*form* dominates) or just one material (*structure* dominates). The complexity of the approach (in biology as well as in engineering) increases with decreasing number of base materials. Biomimetics is a field that has the potential to drive major technical advances and that continuously contributes to "Biological Physics".

The Biomimicry Innovation Method is applied to identify high-potential biological systems, processes and materials that can inspire emerging MEMS technologies as well as optimizing existing ones. Best practices identified comprise algae, horses, Malaysian tropical rainforest understory plants, iridescent fruits, peacock feathers, bird skin, green algae, humans (immune system), adhesive pads in the gecko and in herbivorous insects as well as the mechanical defense strategies of their food.

Introduction

In biomimetics, materials, processes and systems in Nature are analyzed, the underlying principles are extracted and subsequently applied to science and technology [1][2][3]. Biomimetics is a growing field that has the potential to drive major technical advances [4]. It might substantially support successful mastering of current challenges in the development of novel 3D micro- and nanoelectromechanical systems (MEMS and NEMS), e.g., concerning friction, adhesion and wear in such systems (tribological aspects) [5]. The biomimetic approach can result in innovative new technological constructions, processes and developments [3]. Biomimetics can aid MEMS developers to manage the specific requirements in systems or product design, which are even more relevant than for conventional products, especially to create products and processes that are sustainable and perform well (e.g. to overcome stiction), to integrate new functions, to reduce production costs, to save energy, to cut material costs, to redefine and eliminate "waste", to heighten existing product categories, to define new product categories and industries, to drive revenue and to build unique brands [6][7][8][9].

Recurrent principles in biological materials and systems are hierarchy [10][11] and multifunctionality. Vincent and co-workers analyzed 500 biological phenomena, covering over 270 functions, at different levels of hierarchy [10]. Depending on the extent to which each level of the hierarchy is dependent on its lower levels, adaptation or optimization of the biomaterial is independently possible at each level of hierarchy. Size differences between hierarchy levels tend to be about a factor of ten [11]. A major advantage of hierarchical structuring is that the material can be made multifunctional and that a specific material property, such as fracture toughness, can be improved by optimization at different size levels. A direct consequence is the increase in adaptability of natural materials. Functions can be modified or enriched by structuring on an additional level of hierarchy. Adaptability increases, therefore, as a function of the number of levels of hierarchy. This is probably why such a wide range of material and structural properties (see Figure 1 for biological SiO₂ structures in glass-making microorganisms, [7]) can be provided in Nature by such a small range of base materials [12][13].

Biological materials show excellent characteristics that are difficult to grasp in terms of commonly used material properties such as resilience (a component of ecosystem stability: the ability of an ecosystem to recover after disturbance) [14][15][16], self-repair [17], adaptability [16], benevolent behavior [18] and redirected crack propagation [19][20].

Structure and function as well as structure and material are closely related in natural systems. Gordon [21] states "*Structures are made from materials and we shall talk about structures and materials; but in fact there is no clear-cut dividing line between a material and a structure.*" Historically interested readers might also want to read Haeckel's book "Art forms in nature" [22] and D'Arcy Thompson's book "On Growth and Form" [23], especially chapters V on biomineralized structures and VIII on form and mechanical efficiency. Investigations on the cause of the excellent properties of natural materials lead to investigations of intrinsic material properties.

Fig. 1 Structure dominated micromechanical components (SiO₂ shells of algae). Left: Zipper-like structure in Aulacoseira. Middle: Zoom into the same image. © Duncan Waddell, XTAL Enterprises, Australia. Right: Spring-like structure in Rutilaria grevilleana. © R.M. Crawford, AWI Bremerhaven, Germany. Images used with permission. From [7].

Science currently goes through a large change: in biology more and more causation and natural laws are being uncovered [24]. Biology has changed from being very descriptive to a science that can be acknowledged and understood (in terms of concepts) by researchers coming from "hard sciences" such as chemistry, physics, engineering. The "hard sciences" rely on experimental, empirical, quantifiable data or the scientific method, and focus on accuracy and objectivity [25]. The amount of causal laws in this new biology (indicated by the ratio of causal versus descriptive knowledge, Figure 2) is steadily growing and a new field that can be called "Biological Physics" is emerging [24]. The languages of the various fields of science increasingly get compatible, and the amount of collaborations and joint research projects between researchers coming from the "hard sciences" and biologists have increased tremendously over the last years.

Recurrent concepts in biomimetics are integration instead of additive construction, optimization of the whole instead of maximization of a single component feature, multi-functionality instead of mono-functionality and development via trial-and-error processes. Such concepts can easily be transferred to technology, and can be applied by engineers with no knowledge of biology at all [3][9][24].

The complexity of biological and engineering approaches depend on the number of different base materials used (Figure 3): Either many materials are used (*material* dominates) or few materials (*form* dominates) or just one material (*structure* dominates) [7].

Fig. 2 The increasing amount of causal laws in biology generates promising areas of overlap with hard sciences such as physics, chemistry and engineering.

The importance of structures and the complexity of the approach (in biology as well as in engineering) increase inversely with the number of different materials that are or can be used. This can be seen in technology from the meter to the nanometer length scale. The Eiffel tower, e.g., which is mainly made from steel, has many levels of structural hierarchy with important structures on every length scale [7].

Fig. 3 The complexity of biological and engineering approaches depends on the number of different base materials used and/or available.

Material and methods

In MEMS and NEMS technology – comparable to biology - a limited number of base materials such as Si, SiO₂, Silicon nitride, GaAs, Silicon carbide, diamond, InP, SiGe, ferroelectric materials and polymers is used, providing a wide range of functional and structural properties. Therefore, biomimetics seems to prove especially promising for MEMS development [7].

Nachtigall promoted analogy search and states that the nature of qualitative analogy research is impartial, open-minded comparison. He presents numerous examples of insect micromorphology and relates functional mechanisms to technological examples in a visual comparison [26].

Here, the Biomimicry Innovation Method (BIM) [27] is applied to identify high-potential biological systems, processes and materials that can inspire emerging MEMS technologies as well as optimizing existing ones. BIM is an innovation method that seeks sustainable solutions by emulating Nature's time-tested patterns and strategies. The goal is to create products, processes, and policies - new ways of living - that are well adapted to life on earth over the long haul. BIM involves specifically trained biologists as well as engineers, natural scientists, architects and/or designers from universities or companies. BIM is for example used in the rainforest (high species variety resulting in high innovation potential) to learn from and emulate natural models.

Ταριό ΤΑρρποαποποι			
Function	Biologized question:	Nature's best practice	Generated process/
	How does nature		product ideas
Hinges and	mechanically	Diatoms in chains	micromechanical
interlocking	connect hard single	[28][29][30][31][32][33]	optimization of 3D-
devices	cells?		MEMS structure
Click-stop	unfold structures	Corethron pennatum, C.	obtain 3D structures
mechanism	and then fix them?	<i>criophilum</i> [29][34][35]	from 2D structures
Springs	reversibly store	Rutilaria grevilleana, R.	Energy storage in
1 0	mechanical energy?	philipinnarum [36]	MEMS
Parts connected in	provide stability to	Ellerbeckia arenaria [32]	MEMS with
a chain with	chains in turbulent		moveable parts
adjustable length	environments?		1
Movable rigid	optimize moveable	Melosira sp., Ellerbeckia	3D MEMS with
parts	parts?	arenaria [32]	moveable parts
Pumps	move fluids?	Rutilaria grevilleana.	micropumps for lab-
- F -		Rutilaria philipinnarum [36]	on-a-chip
Unfoldable	make 3D structures	Corethron pennatum, C.	obtain 3D structures
structures	from rigid parts?	<i>criophilum</i> [29][34][35]	from 2D structures
Energy dissipation	dissipate	Solium exsculatum [5][37]	3D-MEMS
Energy dissipation	mechanical energy?		5D MENIO
Fracture control	mechanically	Fauus ferus caballus [19][20]	quality assurance of
Crack redirection	protect viable parts?		MEMS
Lubrication	nrevent wear?	Unknown diatom species [33]	preventing stiction
Stability	mechanically	Solium execulatum [5][37]	quality assurance of
(reinforcement)	nrotect viable parts?		MFMS
Surface texturing	structure surfaces?	diatoms [28] especially	MEMS
Surface texturing	structure surfaces:	Solium execulatum [5][37]	
Photoprotective	protect photo-	Begonia navonina Dinlazium	MFMS
coating	sensitive nlants?	tomentosum Phyllagathis	
coating	sensitive plants:	rotundifolia [38] Selacinella	
		willdenowii S uncinata [39]	
Photonic	make colours	diatoms [28] feathers [40]	photonic micro- and
components	without nigments?	butterflies and moths [41][42]	nanodevices MFMS
components	without pigments:	iridescent plants [38][39][43]	nunode vices, iviEivis
		[44][45][46][47][48][49] hird	
		and mammal skin [50][51]	
		[52] iridescent marine algae	
		[53][54] blue spruce [55]	
Pressure resistant	deal with high	<i>Euglena gracilis</i> pellicle [56]	lah-on-a-chin
containers	pressures?		luo on u omp
Fixation	mechanically fix	Corethron nennatum C	3D-MEMS lab-on-a-
1 IXation	structures?	<i>crionhilum</i> [29][34][35]	chin
Selective	reversibly and	Homo saniens saniens	reusable lab-on-a-
switchable	switchable adhere to	immune system	chin devices [60]
adhesion	structures?	[5][31][57][58][59]	
Dry adhesiyes	reversibly attach to	gecko foot [61][62] insect	connect MFMS parts
	surfaces?	attachment nads [63][64]	nanoadhesives
	54114005:	nlant wax surfaces [65][66]	[67][68]
Self-healing	nrevents breaking	self-healing diatom adhesives	self-healing MFMS
adhesives	of adhesive honds?	[69][70][71]	narts connections
			nanoadhesives [72]

Table 1 Application of the Biomimicry Innovation Method regarding structure dominated components

The steps in BIM are as follows: Identify function, biologize the question, find Nature's best practices and generate product ideas.

Identify function: The biologists distil challenges posed by engineers/natural scientists/architects and/or designers to their functional essence.

Biologize the question: In the next step, these functions are translated into biological questions such as "How does Nature mechanically connect hard single cells?" or "How does Nature generate 3D structures from rigid parts?" The basic question is "What would Nature do here?" The experience of one of the authors (ICG) on the boundary between biology and engineering, literature search, talks with experts from biology and the AskNature.org database provided by the Biomimicry Institute are utilized in course of the BIM to exploit the large biodiversity in rainforests and in the water bodies of the world and to find biological inspiration for functions relevant for MEMS such as click-stop mechanisms, micropumps, energy dissipation and lubrication (Table 1).

Find Nature's best practices. Screens of the relevant literature in scientific databases as well as entering a highly inspiring environment with the biologized questions in mind (task-oriented visit) are used to obtain a compendium of how plants, animals and ecosystems solve the specific challenge. The inspiring environments should preferably be habitats with high species diversity, e.g., the rain forest or a coral reef. Thereby a compendium of how plants, animals and ecosystems solve the specific challenge is obtained.

Generate process/product ideas. From these best practices (90% of which are usually new to clients) ideas for cost-effective, innovative, life-friendly and sustainable products and processes are generated.

Results and discussion

The best practices identified are biological micro- and nanostructures in organisms as diverse as algae, horses, Malaysian tropical rainforest understory plants, peacocks, birds, green algae, humans (immune system), adhesive pads in the gecko and in herbivorous insects as well as the mechanical defense strategies (wax crystals) of their food. The summary of the results is given in Table 1.

The organisms that occur most often in the table are diatoms. Diatoms are unicellular microalgae with a cell wall consisting of a siliceous skeleton enveloped by a thin organic case [28]. The cell walls of each diatom form a pillbox-like shell consisting of two parts that fit within each other. These microorganisms vary greatly in shape, ranging from box-shaped to cylindrical; they can be symmetrical as well as asymmetrical and exhibit an amazing diversity of nanostructured frameworks. These biogenic hydrated silica structures have elaborate shapes, interlocking devices, and, in some cases, hinged structures.

The silica shells of the diatoms experience various forces from the environment and also from the cell itself when it grows and divides, and the form of these micromechanical parts has been evolutionarily optimized during the last 150 million years or more (Figure 1). The diatom species *Rutilaria grevilleana* and *Rutilaria philipinnarum* have structures that might be interpreted as springs [7][36]. However, more detailed investigation is needed to confirm this. *Ellerbeckia arenaria* [73] is a diatom that lives in waterfalls. *E. arenaria* cells form string like colonies, which can be several millimeters long and can reversibly be elongated by one third of their original length [32][37][7]. The diatoms *Melosira sp.* [32], *Solium exsculptum* [5][4] and *Ellerbeckia arenaria* are interesting best practices for optimization of moveable parts in Nature. The diatom species *Solium exsculptum* lived 45 million years ago. Scanning Electron Microscopy images of this Eocene fossil from a deposit at Mors, Denmark reveal that the connections between sibling cells are still in good condition [5].

Rutilaria philipinnarum is a fossil colonial diatom thought to have lived in inshore marine waters (Crawford, personal communication 2008). In this species, the single diatoms connect by linking spines and by a complex siliceous structure termed the periplekton. These linking structures on the one hand keep the cells together, but on the other hand also keep distance between the cells. The shape of the spines allows expansion of the chain to a certain maximum distance and compression to a minimum distance, in which case there is still some fluid between the cells. The links allow movement of single cells in the chain against or from each other in a rather one-dimensional way [29].

Structural photonic components in biology exhibit a huge variety [28][40]-[42][38][39][43]-[55].

Conclusion

Application of the Biomimicry Innovation Method concerning 3D micro- and nanomechanical systems might prove highly useful concerning MEMS development. The inspiring organisms, structures and function already identified lay a sound foundation to proceed to the next step: MEMS developers interested in including the bioinspired approaches presented in this work have already been approached and bioinspired 3D MEMS will be designed and modeled and prototypes will be constructed. Further analysis of the rich flora in South East Asia might provide further useful input concerning novel approaches regarding MEMS. Increasing awareness about the innovation potential of the rainforest might cause a paradigm shift in the way locals view the pristine forests.

Acknowledgements

The authors thank P. Gruber for carefully reading the manuscript and valuable input, and R.M. Crawford and D. Waddell for images and discussion. Part of this work has been funded by the Austrian K*plus*-Program via the Austrian Center of Competence for Tribology, AC^2T research GmbH, Wiener Neustadt. The Austrian Society for the Advancement of Plant Sciences has funded part of this work via the BioScreen Pilot Project.

This book chapter is an extended and updated version of a 4-page article [7].

References

1. Bhushan, B. (2009): *Biomimetics: lessons from nature-an overview*. Philosophical Transactions of the Royal Society A. 367: 1445-1486.

2. Bar-Cohen, Y. (2005): Biomimetics: biologically inspired technologies, CRC Press.

3. Gebeshuber, I.C. and M. Drack, (2008): An attempt to reveal synergies between biology and engineering *mechanics*. Journal of Mechanical Engineering Science. 222, 1281-1287.

4. Gebeshuber I.C., Majlis B.Y. and Stachelberger H. (2009): *Tribology in Biology: Biomimetic studies across dimensions and across fields*. International Journal of Mechanical and Material Engineering, submitted

5. Gebeshuber, I.C., (2007): Biotribology inspires new technologies. Nano Today. 2(5): 30-37.

6. Gebeshuber, I.C., A. Pauschitz and F. Franek. (2006): *Biotribological model systems for emerging nano-scale technologies*, in: Proc. 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, Editors, p. 396-400.

7. Gebeshuber, I.C., Stachelberger H., Ganji B.A., Fu D.C., Yunas J. and Majlis B.Y. (2009): *Exploring the innovational potential of biomimetics for novel 3D MEMS*. Advanced Materials Research. 74, 265-268.

8. Gebeshuber, I.C., H. Stachelberger and M. Drack. (2005): *Diatom tribology*, in: Life Cycle Tribology, Editors, Tribology and Interface Engineering Series, 48, Series Editor B.J. Briscoe, Elsevier, p. 365-370.

9. Gebeshuber, I.C., B.Y. Majlis, L. Neutsch, F. Aumayr and F. Gabor. (2009): *Nanomedicine and biomimetics: life sciences meet engineering & physics*, Proceedings of the 3rd Vienna International Conference on Micro- and Nanotechnology Viennano09, Editors, p. 17-23.

10. Fratzl, P. and R. Weinkamer, (2007): *Nature's hierarchical materials*. Progress in Materials Science. 52 (8), 1263-1334.

11. Vincent, J.F.V., (2005): *Deconstructing the design of a biological material*. Journal of Theoretical Biology. 236, 73-78.

12. Jeronimidis, G. and A.G. Atkins, (1995): *Mechanics of biological materials and structures—Nature's lessons for the engineer.* Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science. 209, 221-235.

13. Vincent, J.F.V., (2009): *Biomimetics – A review.* Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, submitted

14. Holling, C.S., (1973): *Resilience and stability of ecological systems*. Annual Review of Ecological Systems. 4, 1-23.

15. Resilience and the behavior of large-scale systems (2002). Scope Report 60, Editors, Island Press.

16. Walker, B., C.S. Holling, S.R. Carpenter and A. Kinzig (2004): *Resilience, adaptability and transformability in social–ecological systems.* Ecology and Society. 9(2), 5.

17. Proceedings of the first workshop on self-healing systems (2002). Charleston, South Carolina.

18. Trivers, R.L. (1971): The evolution of reciprocal altruism. The Quarterly Review of Biology. 46(1), 35-57.

19. Kasapi, M.A. and J.M. Gosline, (1997): *Design complexity and fracture control in the equine hoof wall.* Journal of Experimental Biology. 200, 1639-1659.

20. Kasapi, M.A. and J.M. Gosline, (1999): *Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin*. Journal of Experimental Biology. 202, 377-391.

21. Gordon, J.E. (1981): Structures, or why things don't fall down, Da Capo Press New York. p. 29.

22. Haeckel E. (1899): Art forms in nature. Biobliographisches Institut, Leipzig and Vienna.

23. Thompson D'A. (1917): On growth and form. Cambridge University Press, Cambridge, England.

24. Gebeshuber, I.C., P. Gruber and M. Drack, (2009): A gaze into the crystal ball - biomimetics in the year 2059. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, submitted

25. Lemons, J., (1996): *Scientific uncertainty and its implications for environmental problem solving*, Blackwell Publishing.

26. Nachtigall, W., (2003): Das große Buch der Bionik. Deutsche Verlagsanstalt, Germany, p. 214f.

27. Biomimicry innovation method (2008). Biomimicry Guild, Helena, MT, USA.

28. Round, F.E., R.M. Crawford and D.G. Mann (1990): *The diatoms: biology and morphology of the genera*. Cambridge University Press, Cambridge, UK.

29. Gebeshuber, I.C. and R.M. Crawford, (2006): *Micromechanics in biogenic hydrated silica: hinges and interlocking devices in diatoms*. Journal of Engineering Tribology. 220(J8), 787-796.

30. Crawford, R.M. and I.C. Gebeshuber, (2006): *Harmony of beauty and expediency*. Science First Hand. 5(10), 30-36.

31. Gebeshuber, I.C., M. Drack and M. Scherge, (2008): *Tribology in biology*. Tribology - Materials, Surfaces & Interfaces. 2(4), 200-212.

32. Gebeshuber, I.C., H. Stachelberger and M. Drack, (2005): *Diatom bionanotribology - Biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear.* Journal of Nanoscience and Nanotechnology. 5 (1), 79-87.

33. Gebeshuber, I.C., J.H. Kindt, J.B. Thompson, Y. Del Amo, H. Stachelberger, M. Brzezinski, G.D. Stucky, D.E. Morse and P.K. Hansma, (2003): *Atomic force microscopy study of living diatoms in ambient conditions*. Journal of Microscopy. 212 (Pt3), 292-299.

34. Crawford, R.M. and F. Hinz, (1995): *The spines of the centric diatom Corethron criophilum: light microscopy of vegetative cell division*. European Journal of Phycology. 30: 95–105.

35. Crawford, R.M., F. Hinz and C. Honeywill, (1998): *Three species of the diatom genus Corethron Castracane: structure, distribution and taxonomy*. Diatom Research. 13: 1–28.

36. Srajer, J., B.Y. Majlis and I.C. Gebeshuber, (2009): Microfluidic simulation of a colonial diatom chain reveals oscillatory movement. Acta Botanica Croatia, in press

37. Gebeshuber, I.C., M. Aumayr, O. Hekele, R. Sommer, C.G. Goesselsberger, C. Gruenberger, P. Gruber, E. Borowan, A. Rosic and F. Aumayr. (2009): *Bacilli, green algae, diatoms and red blood cells – how nanobiotechnological research inspires architecture*, in: Bio-Inspired Nanoscience, edited by Yong Zhou, Nova Science Publishers 2009, in press

38. Gould, K.S. and D.W. Lee (1996): *Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants*. American Journal of Botany. 83(1), 45-50.

39. Hebant C. and D.W. Lee, (1984): *Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves*. American Journal of Botany. 71(2), 216-219.

40. Zi J., X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu and R. Fu, (2003): Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences USA. 100(22): 12576-12578.

41. Prum, R.O., T. Quinn and R.H. Torres, (2006): *Anatomically diverse butterfly scales all produce structural colours by coherent scattering*. The Journal of Experimental Biology. 209, 748-765

42. Stavenga, D.G., S. Stowe, K. Siebke, J. Zeil and K. Arikawa, (2004): *Butterfly wing colours: scale beads make white pierid wings brighter.* Proceedings of the Royal Society London B. 271, 1577-1584.

43. Lee, D.W. and J.B. Lowry, (1975): *Physical basis and ecological significance of iridescence in blue plants*. Nature. 254, 50-51.

44. Lee, D.W. (2007): Nature's palette: the science of plant color. University of Chicago Press, Chicago, USA.

45. Richards, P.W., (1952): The tropical rainforest, Cambridge University Press.

46. Fox, D.L. and J.R. Wells (1971): *Schemochromic blue leaf-surfaces of Selaginella*. American Fern Journal. 61, 137-139

47. Lee, D.W., (1977): On iridescent plants. Gardens Bulletin Singapore. 30, 21-29.

48. Lee, D.W. (1991): Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature. 349, 260-262.

49. Lee, D.W., G.T. Taylor and A.K. Irvine, (2000): *Structural fruit coloration in Delarbrea michieana (Araliaceae).* International Journal of Plant Sciences. 161(2), 297-300.

50. Fox, D. S. (1976): Animal structural colors and biochromes. University of California Press, Berkeley, USA.

51. Prum, R.O. and R. Torres, (2003): *Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays.* The Journal of Experimental Biology. 206, 2409-2429

52. Prum, R.O. and R.H. Torres, (2004): *Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays.* The Journal of Experimental Biology. 207, 2157-2172.

53. Gerwick, W.H. and N.J. Lang, (1977): *Structural chemical and ecological studies on iridescence in Iridaea* (*Rhodophyta*). Journal of Phycology. 13(2), 121-127

54. Pederson, M., G.M. Roomans and A. Hofsten, (1980): *Blue iridescence and bromine in the cuticle of the red alga Chondrus cripus Stackh*. Botanica Marina. 23, 193-196

55. Pfündel, E.E., G. Agati and Z.G. Cerovic (2006): *Optical properties of plant surfaces*, in Biology of the plant cuticle. Editors, Blackwell Publishing, Oxford, 23, p. 216-249.

56. Gruenberger, C., R. Ritter, F. Aumayr, H. Stachelberger and I.C. Gebeshuber, (2007): *Algal biophysics: Euglena gracilis investigated by atomic force microscopy*. Materials Science Forum. 555: 411-416.

57. Tees, D.F. and D.J. Goetz, (2003): *Leukocyte adhesion: an exquisite balance of hydrodynamic and molecular forces.* News in Physiological Sciences. 18, 186-190.

58. Orsello, C.E., D.A. Lauffenburger and D.A. Hammer, (2001): *Molecular properties in cell adhesion: a physical and engineering perspective*. Trends in Biotechnology. 19(8), 310-316.

59. Kawasaki E. and A. Player (2005): *Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.* Nanomedicine: Nanotechnology, Biology and Medicine. 1(2), 101-109.

60. Sakhalkar, HS, M.K. Dalal, A.K. Salem, R. Ansari, J. Fu, M.F. Kiani, D.T. Kurjiaka, J. Hanes, K.M. Shakesheff and D.J. Goetz, (2003): *Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo*. Proceedings of the National Academy of Sciences USA. 100: 15895-15900.

61. Autumn, K., Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing and R.J. Full (2000): *Adhesive force of a single gecko-foot hair.* Nature. 405, 681-685.

62. Dubrow, R., (2003): *Structures, systems and methods for joining articles and materials and uses therefore.* US Patent 7056409

63. Scherge, M. and S. Gorb, (2001): Biological micro- and nanotribology – Nature's solutions. Springer Verlag, Berlin Heidelberg.

64. Gorb, E.V. and S.N. Gorb, (2002): Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomologia Experimentalis et Applicata. 105 (1), 13-28.

65. Gorb, E., K. Haas, A. Henrich, S. Enders, N. Barbakadze and S. Gorb, (2005): *Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.* Journal of Experimental Biology. 208, 4651-4662.

66. Koch, K. A. Dommisse, W. Barthlott and S.N. Gorb, (2007): *The use of plant waxes as templates for microand nanopatterning of surfaces*. Acta Biomaterialia. 3 (6), 905-909.

67. Northen, M.T. and K.L. Turner (2005): *A batch fabricated biomimetic dry adhesive*. Nanotechnology. 16 (8): 1159-1166.

68. Shah, G.J. and Sitti M. (2004): *Modeling and design of biomimetic adhesives inspired by gecko foot-hairs*, In: IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 873-878.

69. Gebeshuber, I.C., J.B. Thompson, Y. Del Amo, H. Stachelberger and J.H. Kindt, (2002): *In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties*. Materials Science and Technology. 18, 763-766.

70. Higgins, M.J., P. Molino, P. Mulvaney and R. Wetherbee, (2003): *The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility.* Journal of Phycology. 39: 1181-1193.

71. Higgins, M.J., J.E. Sader, P. Mulvaney and R. Wetherbee, (2003): *Probing the surface of living diatoms with atomic force microscopy: the nanostructure and nanomechanical properties of the mucilage layer.* Journal of Phycology. 39, 722-734.

72. Hansma, P.K., P.J. Turner and R.S. Ruoff, (2007): *Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials.* Nanotechnology. 18, 044026(3p).

73. Schmid, A-M.M. and R.M. Crawford, (2001): *Ellerbeckia arenaria (Bacillariophyceae): formation of auxospores and initial cells*. European Journal of Phycology. 36: 307-320.

Author index:

Aimene, Yamina	89	Courrech-Dupont, Sylvain	421
Albert, Levente	504	Coutand, Catherine	19, 47, 349
Al-Haddad, Jameel	164,477	Couturier, Etienne P.	421
Alméras, Tancrède	75, 163, 228, 236,	Cuartero, Jesús	212
	314, 349, 542	Darnige, T.	322
Amusant, Nadine	528	de Bruyn, Gerd	398
Angeles, Guillermo	156	de Langre, Emmanuel	59, 101
Angyalossy, Veronica	156	Decourteix, Mélanie	19
Arakawa, Y.	297	Derome, Dominique	53,489
Argentina, Médéric	179	Ditsch, Friedrich	202
Arinero, Richard	228	Dlouhá, Jana	542
Arnould, Olivier	228,497	Dole, Patrice	273
Bag, Rahime	273	Domínguez, Eva	212
Barbacci, Adelin	306	Douady, Stéphane	11,421
Báscones, Esther	335	Duchateau, Emmanuel	349
Bassman, Lori	67	Dumais, Jacques	179
Bastien, Renaud	11	Dupont, Sylvain	116
Bauer, Georg	194, 367, 482	Eberle, Annika	67
Beauchêne, Jacques	279, 497	Elbaum, Rivka	244
Beaugrand, Johnny	273	Endo, Yasuhiro	187
Boiffin, Juliette	163	España, Laura	212
Boizard, Sophie D.	110,463	Ewers, Frank W.	164
Bonal, Damien	89	Faraj Pour, Arash	350
Borodich, Feodor M.	176	Fleck, Claudia	406
Bou Daher, Firas	40	Fourcaud, Thierry	95
Boudaoud, Arezki	2	Fournier, Meriem	163, 306, 314, 349,
Boutahar, N.	528		487
Brancheriau, Loïc	285,456	Fratzl, Peter	202, 343
Brémaud, Iris	535	Gallenmüller, Friederike	194
Brunel, Nicole	47	Gallet, Philippe	285
Brunet, Yves	116, 131	Gebeshuber, I.C.	374
Bührig-Polaczek, Andreas	406	Geitmann, Anja	40,218
Burgert, Ingo	202, 259, 343	Genet, P.	322
Bytebier, Karl	228	Ghestem, Murielle	450
Cabrolier, Pierre	75,279	Gorb, Elena V.	176
Cao, Kunfang	450	Gorb, Stanislav N.	27, 176, 194, 211
Carmeliet, Jan	53,489	Gosselin, Frédérick	101
Chaix, G.	528	Gray, Derek G.	439
Clair, Bruno	228, 236, 289, 297,	Gril, Joseph	297, 328, 542
	349, 469, 497, 542	Gruber, Petra	412
Cochard, Hervé	47	Guillon, Thomas	95
Collet, Catherine	487	Guyer, Robert	489
Constant, Thiéry	306, 487	Hamant, Olivier	2
Corson, Francis	2	Harrington, Matthew J.	202
Couder, Yves	2	Hartmann, C.	322

549

Hémon, Pascal	131	Ménard, Léa	469
Heredia, Antonio	212	Minato, Kazuya	535
Hernández, Luis F.	3	Mine, François-Xavier	456
Hofmann, Tamás	504	Mitchell, Stephen J.	110,463
Hounzandji, Paul Igor A.	487	Moulia, Bruno	11, 19, 59, 335
Isnard, Sandrine	163	Mühlen, Gilda	469
Jaouen, Gaëlle	349	Neinhuis, Christoph	202
Jeronimidis, George	47	Nellesen, Anke	367
Julien, Jean-Louis	19	Nepveu, Gérard	306
Jullien, Delphine	75,236	Niemz, Peter	504, 521
Kappel, Roland	382	Noblin, Xavier	179
Keunecke, Daniel	521	Palin, Robert	265
Khademi Eslam, Habibollah	350	Pando, Valentín	335
Kinosita, Eichiro	187	Patino, Sandra	163
Kizilova, Natalya N.	148	Peñalvo, Alejandro	335
Knippers, J.	389	Pierce, Jeffrey A.	164
Kojima, Miho	75	Pilate, G.	236
Kokutse, Adzo Dzifa	528	Popper, Rudolf	504
Kolb, Evelyne	322	Poppinga, S.	389
Konrad, Wilfried	32	Pritchard, Jeremy	265
Kraft, Oliver	205,444	Ouartier, L.	322
Kubinski, Kirk-René	194	Ouilliet. Catherine	170
Kurek, Bernard	273	Ouinn. Kenny	67
Lachenbruch, Barbara	513	Rétfalvi, Tamás	504
Lasavgues. Philippe	285	Riekel, C.	236
Leblanc-Fournier, Nathalie	19	Rodriguez, Mathieu	59
Lecoq. L.E.	322	Rojas, Nicolas	179
Lenne, Catherine	19	Roth-Nebelsick, Anita	32
Liehr, Andreas W.	482	Roux. Pascal	116
Lienhard, J.	389	Rowe, Nick	289,469
Lintilhac, Philip M.	251	Ruelle, Julien	289, 297
Logvenkov, S.A.	140	Rüggeberg, Markus	259
Lucate, Joshua G.	439	Sakamoto, Jiro	187
Ludwig, Ferdinand	398	Schleicher, S.	389
Ma, Wenzhang	450	Schwaiger, Ruth	205,444
Madero-Vega, Carolina	156	Seidel, Robin	205,406
Magnenet, Vincent	306	Sellier, Damien	116
Majlis, B.Y.	374	Sengespeick, Andreas	367
Mansfield, Shawn	477	Shilina, Julia	121, 168
Marmottant, Philippe	170	Sierra-de-Grado, Rosario	335
Martin, Ludovic	19	Sober, Anu	121,168
Martínez-Zurimendi, Pablo	335	Speck, Olga	482
Masselter, Tom	357, 389, 431	Speck, Thomas	194, 205, 259, 357,
Mattheck, Claus	83, 382	1	367, 389, 398, 406,
McKey, Dovle	469		431, 444, 482
McLean, J. Paul	497	Stachelberger, H.	374
Meinzer, Frederick C.	513	Stahl, Clément	89
Melzer, Björn	205,444	Stein, Alexander A.	140

Steinbrecher, Tina	205,444
Stokes, Alexia	450, 456
Strauss, Steven H.	513
Sugiyama, Junji	236, 328
Telewski, Frank W.	164,477
Tesari, Iwiza	83
Thaunay, Patrice	285
Thibaut, Bernard	89, 279, 535
Thielen, Marc	398
Thomas, Colin	265
Traas, Jan	2
Vincent, Olivier	170
Voelker, Steven L.	513
Voigt, Dagmar	194, 211
Wang, Yue	328
Wei, Chungfang	251
Westbrook, Jared	179
Xie, Jianlei	450
Yamamoto, Hiroyuki	75, 289, 297
Yoshida, M.	297
Yudina, E.N.	140
Zillig, Wolfgang	53