
 
 
 
Proceedings of the 
 

Sixth Plant Biomechanics Conference 
 

November 16th
 – 21st, 2009, Cayenne, French Guyana, France 

 
 

Bernard Thibaut 
Editor

!"#$%&#'#" ()**#&&$$

!"#$%& '()*+ !"#$ %&'()*+',- ./&,0)11')* 223 ./&,0)11')*3 4*5&6)7
,$()$- ."/(0)$(+ 89*/:5*'+ ;)6<3 "5&6-3 4*5&6)7
1(/0" ,"/*)2+ 2"#8 %&'()*+',- =15'+) :5+6513 !1)*>/&, 4)**5&?3 4*5&6)7
!/*)20 3)04$05+ !)&,*) @/* ='/>'>),'6 5&? "5,A*51 ;)6<&/1/9')+3 %&'()*+',- /@ =5,<3 %B7
'$"(6$ !$("0)-)7)#+ !)&,*) @/* ='/>'>),'6+3 C)05*,>)&, /@ D&9'&))*'&93 %&'()*+',- /@ #)5?'&93 %B7
8200# 9&()#5": ;%25<+ 2&+,',A,) @E* ='/1/9') 2223 %&'()*+',- /@ 4*)'FA*93 G)*>5&-7
=&"-2# ;%$4>+ :15&, ='/>)6<5&'6+ G*/A03 =/,5&'6 95*?)&3 %&'()*+',- /@ 4*)'FA*93 G)*>5&-7
.(20> =$*$?#>)+ .'6<'95& $,5,) %&'()*+',-3 D5+, H5&+'&93 .23 %$87
'$"::($@ A20)$*+ ;?$7)#& %&'()*+',- /@ 89*'6A1,A*51 $6')&6) $I)?)&7
B$002(5 ;2*-C0+ $;42 :56J@/*+J3 $,/6J</1>3 $I)?)&7
8)("@/>) D2-2-"5"+ H5F/*5,/*- /@ ='/ .5,)*'51 :<-+'6+3 "59/-5 %&'()*+',-3 K505&7
1$(02(7 =&)E2/5+ !"#$ L %.# D6/4/G3 4*)&6< GA-5&53 4*5&6)



6th Plant Biomechanics Conference – Cayenne, November 16 – 21, 2009 

 
 
 
 
Preface 
 
 
This 6th Plant Biomechanics conference is hosted by French Guiana, a tiny part of the huge 
Amazonian forest, on the Guyana shield. French Guiana was a place where tree biomechanics 
research begins in the seventies in a close cooperation between French and Japanese 
scientists. Many participants to this conference made part of their work here in French Guiana 
and it is a pleasure to make the other discover this wonderful tropical rain forest. 
 
As for the former conferences there will be papers dealing with all kind of plants and very 
different mechanical solutions at whole plant, organ or cell level. There is also a strong 
emphasis on useful material coming from plants and on bio-inspired solutions for engineering.  
 
Some participants, old friends of the beginning, were actors of the five other PBM, but many 
young scientists and PhD come for the first time and this is good news for the future of our 
community. It is a pity that some of us cannot participate this time because of fund restrictions 
due to the economic crisis but they keep in contact and we will send them the proceedings of 
this conference. 
 
I want to mention all the national or regional organizations that help us for the funding and the 
organization of PBM 2009, namely, AgroParisTech, CIRAD, CNES, CNRS, INRA, DRRT 
Guyane, IESG, IRISTA, IUFM, PUG, Région Guyane and UAG. 
 
I want also to give a very special thank to Laetitia and Julien Ruelle. Without the energy of 
Laetitia this conference will not have been possible and without the expertise of Julien, these 
proceedings will not be under your eyes. 
 
Thanks also to all the colleagues and PhD students who were there when needed for so many 
help in such an adventure. 
 
And last, thanks to the members of the scientific committee for their reactivity and efficient 
reviewing of the text here after. 
 
Have a good reading. 
 
    Bernard THIBAUT 
    Directeur de recherche au CNRS 

Directeur de l’UMR Ecofog 
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Exploring the innovation potential of biomimetics for novel 3D 
micro- and nanoelectromechanical systems (M E MS and N E MS)  

Gebeshuber I.C . 1,2,3, Stachelberger H . 2 and Majlis B.Y. 1 

1 Universiti Kebangsaan Malaysia, Malaysia; 2 University of Technology Vienna, Austria;  
3 Austrian Center of Competence for Tribology, Austria 

Abstract  

Science currently goes through a major change, with biology gaining increasing importance. A new 
Leitw Biological Physics  is evolving. Biomimetics, i.e., technology 
transfer from biology to engineering, is especially promising in MEMS development because of the 
material constraints in both fields. Biomimetic concepts such as integration instead of additive 
construction, optimization of the whole instead of maximization of a single component feature, multi-
functionality instead of mono-functionality and development via trial-and-error processes can also be 
applied by engineers not at all involved in biology.  

A novel way to describe the complexity of biological and engineering approaches depending on the 
number of different base materials is proposed: Either many materials are used (material dominates) 
or few materials (form dominates) or just one material (structure dominates). The complexity of the 
approach (in biology as well as in engineering) increases with decreasing number of base materials. 
Biomimetics is a field that has the potential to drive major technical advances and that continuously 

 
The Biomimicry Innovation Method is applied to identify high-potential biological systems, 

processes and materials that can inspire emerging MEMS technologies as well as optimizing existing 
ones. Best practices identified comprise algae, horses, Malaysian tropical rainforest understory plants, 
iridescent fruits, peacock feathers, bird skin, green algae, humans (immune system), adhesive pads in 
the gecko and in herbivorous insects as well as the mechanical defense strategies of their food. 

Introduction 

In biomimetics, materials, processes and systems in Nature are analyzed, the underlying principles 
are extracted and subsequently applied to science and technology [1][2][3]. Biomimetics is a growing 
field that has the potential to drive major technical advances [4]. It might substantially support 
successful mastering of current challenges in the development of novel 3D micro- and 
nanoelectromechanical systems (MEMS and NEMS), e.g., concerning friction, adhesion and wear in 
such systems (tribological aspects) [5]. The biomimetic approach can result in innovative new 
technological constructions, processes and developments [3]. Biomimetics can aid MEMS developers 
to manage the specific requirements in systems or product design, which are even more relevant than 
for conventional products, especially to create products and processes that are sustainable and perform 
well (e.g. to overcome stiction), to integrate new functions, to reduce production costs, to save energy, 

define new product categories and industries, to drive revenue and to build unique brands [6][7][8][9]. 
Recurrent principles in biological materials and systems are hierarchy [10][11] and multi-

functionality. Vincent and co-workers analyzed 500 biological phenomena, covering over 270 
functions, at different levels of hierarchy [10]. Depending on the extent to which each level of the 
hierarchy is dependent on its lower levels, adaptation or optimization of the biomaterial is 
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independently possible at each level of hierarchy. Size differences between hierarchy levels tend to be 
about a factor of ten [11]. A major advantage of hierarchical structuring is that the material can be 
made multifunctional and that a specific material property, such as fracture toughness, can be 
improved by optimization at different size levels. A direct consequence is the increase in adaptability 
of natural materials. Functions can be modified or enriched by structuring on an additional level of 
hierarchy. Adaptability increases, therefore, as a function of the number of levels of hierarchy. This is 
probably why such a wide range of material and structural properties (see Figure 1 for biological SiO2 
structures in glass-making microorganisms, [7]) can be provided in Nature by such a small range of 
base materials [12][13].  

Biological materials show excellent characteristics that are difficult to grasp in terms of commonly 
used material properties such as resilience (a component of ecosystem stability: the ability of an 
ecosystem to recover after disturbance) [14][15][16], self-repair [17], adaptability [16], benevolent 
behavior [18] and redirected crack propagation [19][20]. 

Structure and function as well as structure and material are closely related in natural systems. 
Gordon [21 Structures are made from materials and we shall talk about structures and 
materials; but in fact there is no clear-cut dividing line between a material and a structure
Historically interested readers might also want to read Haec 22] and 

23], especially chapters V on biomineralized 
structures and VIII on form and mechanical efficiency. Investigations on the cause of the excellent 
properties of natural materials lead to investigations of intrinsic material properties. 
 

 
 
F ig. 1 Structure dominated micromechanical components (SiO2 shells of algae). Left: Zipper-like structure in 
Aulacoseira. Middle : Zoom into the same image. © Duncan Waddell, XTAL Enterprises, Australia. Right: 
Spring-like structure in Rutilaria grevilleana. © R.M. Crawford, AWI Bremerhaven, Germany. Images used with 
permission. F rom [7] . 
 

Science currently goes through a large change: in biology more and more causation and natural 
laws are being uncovered [24]. Biology has changed from being very descriptive to a science that can 
be acknowledged and understood (in terms of c

quantifiable data or the scientific method, and focus on accuracy and objectivity [25]. The amount of 
causal laws in this new biology (indicated by the ratio of causal versus descriptive knowledge, Figure 

24]. The 
languages of the various fields of science increasingly get compatible, and the amount of 

biologists have increased tremendously over the last years. 
Recurrent concepts in biomimetics are integration instead of additive construction, optimization of 

the whole instead of maximization of a single component feature, multi-functionality instead of mono-
functionality and development via trial-and-error processes. Such concepts can easily be transferred to 
technology, and can be applied by engineers with no knowledge of biology at all [3][9][24].  

The complexity of biological and engineering approaches depend on the number of different base 
materials used (Figure 3): Either many materials are used (material dominates) or few materials (form 
dominates) or just one material (structure dominates) [7].  
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F ig. 2 The increasing amount of 
causal laws in biology generates 
promising areas of overlap with hard 
sciences such as physics, chemistry 
and engineering. 

 
The importance of structures and the complexity of the approach (in biology as well as in 

engineering) increase inversely with the number of different materials that are or can be used. This can 
be seen in technology from the meter to the nanometer length scale. The Eiffel tower, e.g., which is 
mainly made from steel, has many levels of structural hierarchy with important structures on every 
length scale [7].  
 

 

 
F ig. 3 The complexity of biological 
and engineering approaches depends 
on the number of different base 
materials used and/or available. 

Material and methods 

In MEMS and NEMS technology  comparable to biology - a limited number of base materials 
such as Si, SiO2, Silicon nitride, GaAs, Silicon carbide, diamond, InP, SiGe, ferroelectric materials 
and polymers is used, providing a wide range of functional and structural properties. Therefore, 
biomimetics seems to prove especially promising for MEMS development [7]. 

Nachtigall promoted analogy search and states that the nature of qualitative analogy research is 
impartial, open-minded comparison. He presents numerous examples of insect micromorphology and 
relates functional mechanisms to technological examples in a visual comparison [26]. 

Here, the Biomimicry Innovation Method (BIM) [27] is applied to identify high-potential 
biological systems, processes and materials that can inspire emerging MEMS technologies as well as 
optimizing existing ones. BIM is an innovation method that seeks sustainable solutions by emulating 
Nature's time-tested patterns and strategies. The goal is to create products, processes, and policies - 
new ways of living - that are well adapted to life on earth over the long haul. BIM involves 
specifically trained biologists as well as engineers, natural scientists, architects and/or designers from 
universities or companies. BIM is for example used in the rainforest (high species variety resulting in 
high innovation potential) to learn from and emulate natural models.  
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Table 1 Application of the Biomimicry Innovation Method regarding structure dominated components 
Function Biologized question:  

 
 Generated process/ 

product ideas 
Hinges and 
interlocking 
devices 

connect hard single 
cells? 

Diatoms in chains 
[28][29][30][31][32][33] 

micromechanical 
optimization of 3D-
MEMS structure 

Click-stop 
mechanism and then fix them?  

Corethron pennatum, C . 
criophilum [29][34][35] 

obtain 3D structures 
from 2D structures 

Springs 
mechanical energy? 

Rutilaria grevilleana, R. 
philipinnarum [36] 

Energy storage in 
MEMS  

Parts connected in 
a chain with 
adjustable length 

chains in turbulent 
environments? 

Ellerbeckia arenaria [32] MEMS with 
moveable parts 

Movable rigid 
parts parts?  

Melosira sp., Ellerbeckia 
arenaria [32] 

3D MEMS with 
moveable parts 

Pumps  Rutilaria grevilleana, 
Rutilaria philipinnarum [36] 

micropumps for lab-
on-a-chip  

Unfoldable 
structures from rigid parts? 

Corethron pennatum, C . 
criophilum [29][34][35] 

obtain 3D structures 
from 2D structures 

Energy dissipation 
mechanical energy? 

Solium exsculptum [5][37] 3D-MEMS 

Fracture control, 
Crack redirection protect viable parts? 

Equus ferus caballus [19][20] quality assurance of 
MEMS 

Lubrication   Unknown diatom species [33] preventing stiction 
Stability 
(reinforcement) 

nically 
protect viable parts? 

Solium exsculptum [5][37] quality assurance of 
MEMS 

Surface texturing   diatoms [28], especially 
Solium exsculptum [5][37] 

MEMS 

Photoprotective 
coating 

- 
sensitive plants? 

Begonia pavonina, Diplazium 
tomentosum, Phyllagathis 
rotundifolia [38], Selaginella 
willdenowii, S. uncinata [39] 

MEMS 

Photonic 
components without pigments? 

diatoms [28], feathers [40], 
butterflies and moths [41][42], 
iridescent plants [38][39][43] 
[44][45] [46][47][48][49], bird 
and mammal skin [50][51] 
[52], iridescent marine algae 
[53][54], blue spruce [55]  

photonic micro- and 
nanodevices, MEMS 

Pressure resistant 
containers pressures? 

Euglena gracilis pellicle [56] lab-on-a-chip 

Fixation 
structures? 

Corethron pennatum, C . 
criophilum [29][34][35] 

3D-MEMS, lab-on-a-
chip 

Selective, 
switchable 
adhesion  

 
switchable adhere to 
structures? 

Homo sapiens sapiens 
immune system 
[5][31][57][58][59] 

reusable lab-on-a-
chip devices [60] 

Dry adhesives 
surfaces? 

gecko foot [61][62], insect 
attachment pads [63][64], 
plant wax surfaces [65][66] 

connect MEMS parts, 
nanoadhesives 
[67][68] 

Self-healing 
adhesives of adhesive bonds? 

self-healing diatom adhesives 
[69][70][71] 

self-healing MEMS 
parts connections, 
nanoadhesives [72] 
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The steps in BIM are as follows: Identify 
practices and generate product ideas. 

Identify function: The biologists distil challenges posed by engineers/natural scientists/architects 
and/or designers to their functional essence. 

Biologize the question: In the next step, these functions are translated into biological questions such 

one of the authors (ICG) on the boundary between biology and engineering, literature search, talks 
with experts from biology and the AskNature.org database provided by the Biomimicry Institute are 
utilized in course of the BIM to exploit the large biodiversity in rainforests and in the water bodies of 
the world and to find biological inspiration for functions relevant for MEMS such as click-stop 
mechanisms, micropumps, energy dissipation and lubrication (Table 1).  

practices: Screens of the relevant literature in scientific databases as well as 
entering a highly inspiring environment with the biologized questions in mind (task-oriented visit) are 
used to obtain a compendium of how plants, animals and ecosystems solve the specific challenge. The 
inspiring environments should preferably be habitats with high species diversity, e.g., the rain forest or 
a coral reef. Thereby a compendium of how plants, animals and ecosystems solve the specific 
challenge is obtained. 

Generate process/product ideas: From these best practices (90% of which are usually new to 
clients) ideas for cost-effective, innovative, life-friendly and sustainable products and processes are 
generated. 

Results and discussion 

The best practices identified are biological micro- and nanostructures in organisms as diverse as 
algae, horses, Malaysian tropical rainforest understory plants, peacocks, birds, green algae, humans 
(immune system), adhesive pads in the gecko and in herbivorous insects as well as the mechanical 
defense strategies (wax crystals) of their food. The summary of the results is given in Table 1. 

The organisms that occur most often in the table are diatoms. Diatoms are unicellular microalgae 
with a cell wall consisting of a siliceous skeleton enveloped by a thin organic case [28]. The cell walls 
of each diatom form a pillbox-like shell consisting of two parts that fit within each other. These 
microorganisms vary greatly in shape, ranging from box-shaped to cylindrical; they can be 
symmetrical as well as asymmetrical and exhibit an amazing diversity of nanostructured frameworks. 
These biogenic hydrated silica structures have elaborate shapes, interlocking devices, and, in some 
cases, hinged structures.  

The silica shells of the diatoms experience various forces from the environment and also from the 
cell itself when it grows and divides, and the form of these micromechanical parts has been 
evolutionarily optimized during the last 150 million years or more (Figure 1). The diatom species 
Rutilaria grevilleana and Rutilaria philipinnarum have structures that might be interpreted as springs 
[7][36]. However, more detailed investigation is needed to confirm this. Ellerbeckia arenaria [73] is a 
diatom that lives in waterfalls. E . arenaria cells form string like colonies, which can be several 
millimeters long and can reversibly be elongated by one third of their original length [32][37][7]. The 
diatoms Melosira sp. [32], Solium exsculptum [5][4] and Ellerbeckia arenaria are interesting best 
practices for optimization of moveable parts in Nature. The diatom species Solium exsculptum lived 45 
million years ago. Scanning Electron Microscopy images of this Eocene fossil from a deposit at Mors, 
Denmark reveal that the connections between sibling cells are still in good condition [5].  

Rutilaria philipinnarum is a fossil colonial diatom thought to have lived in inshore marine waters 
(Crawford, personal communication 2008). In this species, the single diatoms connect by linking 
spines and by a complex siliceous structure termed the periplekton. These linking structures on the one 
hand keep the cells together, but on the other hand also keep distance between the cells. The shape of 
the spines allows expansion of the chain to a certain maximum distance and compression to a 
minimum distance, in which case there is still some fluid between the cells. The links allow movement 
of single cells in the chain against or from each other in a rather one-dimensional way [29].  

Structural photonic components in biology exhibit a huge variety [28][40]-[42][38][39][43]-[55]. 
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Conclusion 

Application of the Biomimicry Innovation Method concerning 3D micro- and nanomechanical 
systems might prove highly useful concerning MEMS development. The inspiring organisms, 
structures and function already identified lay a sound foundation to proceed to the next step: MEMS 
developers interested in including the bioinspired approaches presented in this work have already been 
approached and bioinspired 3D MEMS will be designed and modeled and prototypes will be 
constructed. Further analysis of the rich flora in South East Asia might provide further useful input 
concerning novel approaches regarding MEMS. Increasing awareness about the innovation potential 
of the rainforest might cause a paradigm shift in the way locals view the pristine forests.  
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