Kindly cite as:

Gebeshuber I.C., Majlis B.Y. and Stachelberger H. (2011) "Biomimetics in Tribology", in: "Biomimetics – Materials, Structures and Processes. Examples, Ideas and Case Studies", Eds: Gruber P., Bruckner D., Hellmich C., Schmiedmayer H.–B., Stachelberger H. and Gebeshuber I.C., Springer Heidelberg Dordrecht London New York, Ch. 3, pp. 25–50.

Chapter 3 Biomimetics in Tribology

I.C. Gebeshuber, H.A. Abdel-Aal, B.Y. Majlis, and H. Stachelberger

Abstract Science currently goes through a major change. Biology is evolving 4 as new Leitwissenschaft, with more and more causation and natural laws being 5 uncovered. The term 'technoscience' denotes the field where science and technology 6 are inseparably interconnected, the trend goes from papers to patents, and the 7 scientific 'search for truth' is increasingly replaced by search for applications with 8 a potential economic value. Biomimetics, i.e. knowledge transfer from biology to 9 technology, is a field that has the potential to drive major technical advances. The 10 biomimetic approach might change the research landscape and the engineering 11 culture dramatically, by the blending of disciplines. It might substantially support 12 successful mastering of current tribological challenges: friction, adhesion, lubri- 13 cation and wear in devices and systems from the meter to the nanometer scale. 14 A highly successful method in biomimectics, the biomimicry innovation method, is 15 applied in this chapter to identify nature's best practices regarding two key issues 16 in tribology: maintenance of the physical integrity of a system, and permanent as 17 well as temporary attachment. The best practices identified comprise highly diverse 18 organisms and processes and are presented in a number of tables with detailed 19 references.

I.C. Gebeshuber (\boxtimes)

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

TU BIONIK Center of Excellence for Biomimetics, Vienna University of Technology, Getreidemarkt 9/134, 1060 Vienna, Austria

Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8–10/134, 1040 Vienna, Austria

and

AC²T Austrian Center of Competence for Tribology, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria

e-mail: gebeshuber@iap.tuwien.ac.at

P. Gruber et al. (eds.) *Biomimetics – Materials, Structures and Processes*, Biological and Medical Physics, Biomedical Engineering, DOI 10.1007/978-3-642-11934-7_3, © Springer-Verlag Berlin Heidelberg 2011

1

2

and

and

26

31

32

As next step, detailed investigations on the relevant properties of the best 20 practices identified in this chapter shall be performed, and the underlying principles 21 shall be extracted. Such principles shall then be incorporated into devices, systems 22 and processes; and thereby yield biomimetic technology with increased tribological 23 performance. To accelerate scientific and technological breakthroughs, we should 24 aim at having a context of knowledge: the gap between scientific insights and 25 technological realization should be bridged. To prevent being trapped in the 26 inventor, innovator or investor gaps, a cross dialogue is necessary, a pipeline from 27 'know-why' to 'know-how' to 'know-what'. This is specifically of relevance in 28 tribology, since tribological research is ultimately linked to real-world applications. 29 Applying biomimetics to tribology could provide such a pipeline. 30

3.1 Introduction: Historical Background and Current Developments

Science currently goes through a major change: in biology, more and more causation 33 and natural laws are being uncovered [1]. Biology has changed during the recent 34 decades: it transformed from a rather descriptive field of research to a science that 35 can – in terms of concepts, basic ideas and approaches – be acknowledged and 36 understood by researchers coming from 'hard sciences' (such as physics, chemistry, 37 engineering and materials science) including tribologists (Fig. 3.1) [2]. Tribology 38 relies on experimental, empirical, quantifiable data or the scientific method, and 39 focuses on accuracy and objectivity [3, 4]. The amount of causal laws in this new 40

Fig. 3.1 The increasing amount of causal laws in biology generates promising areas of overlap with tribology

Editor's Proof

3 Biomimetics in Tribology

biology (indicated by the ratio of causal vs. descriptive knowledge) is steadily 41 growing and a new field that can be called 'Biological Physics' is emerging [1]. 42 The languages of the various fields of science increasingly get compatible, and the 43 amount of collaborations and joint research projects between researchers coming 44 from the 'hard sciences' and biologists have increased tremendously over the last 45 years. Still, there is a large gap between the natural sciences and humanities [5]. 46

The term 'technoscience' characterizes a field in which technology and science 47 are inseparably interconnected. This characteristic hybrid form is, for instance, 48 seen in the atomic force microscope – a symbol for both nanoscience and nan-49 otechnology. This tool not only allows for basic scientific investigations, but also 50 for manipulation and engineering at very small scales. In technoscience, there 51 is no clear distinction between investigation and intervention. Even more, by 52 investigation already interventions may be made. Application-oriented biomimetics 53 can be denoted as 'technoscience'. 54

Traditionally, engineers are interested in what works, i.e. what functions and 55 is useful, and are hence rather pragmatic, whereas scientists are interested in 56 explanations, hypotheses and theories that reflect a rather different stance. For 57 scientists, experiments are meant to try and prove or falsify a hypothesis or theory. 58 The practical aspects of experiments, i.e. the potential applicability, do not belong to 59 science but to technology. 'While traditional conceptions of science foreground the 60 formulation and testing of theories and hypotheses, technoscience is characterized 61 by a qualitative approach that aims to acquire new competencies of action and 62 intervention' [6]. Of course, also pure scientific theories are a basis or prerequisite 63 for technology, but it is not necessary to have an application in mind before a 64 scientific investigation, which is a characteristic of the field of technical biology [7]. 65 Living nature is seen from an engineering viewpoint, or even nature itself is thought 66 of as an 'engineer' who is facing technical problems.

In biomimetics, materials, processes and systems in nature are analyzed; the 68 underlying principles are extracted and subsequently applied to science and tech-69 nology [7–10]. Biomimetics is a growing field that has the potential to drive major 70 technical advances [1, 11, 12]. It might substantially support successful mastering 71 of current tribological challenges. The biomimetic approach can result in innovative 72 new technological constructions, processes and developments [7]. Biomimetics can 73 aid tribologists to manage the specific requirements in systems or product design, to 74 integrate new functions, to reduce production costs, to save energy, to cut material 75 costs, to redefine and eliminate 'waste', to heighten existing product categories, to 76 define new product categories and industries, to drive revenue and to build unique 77 brands [13, 14].

Gebeshuber and Drack [7] distinguished two methods of biomimetics: biomimet-79 ics by analogy and biomimetics by induction, to which the different activities in 80 the field can be assigned. Biomimetics by analogy starts with a problem from 81 technology and tries to find analogous problems in nature with the respective 82 solutions that might also be useful in the technology. Biomimetics by induction 83 refers to ideas that stem from basic science approaches in biology, with no intention 84 for applications as a motivation in the first place. 85

Biology and Tribology

Source: ISI Web of Knowledge, Thomson Reuters, Citation Databases: SCI-EXPANDED (2001-present), CPCI-S (2004-present). http://www.isiknowledge.com, (accessed 5 May 2010)

Biomimetics is yet another example for the increasing dissolution of disciplines 86 that are found in science, together with the development of highly specialized 87 domains. Interdisciplinary work with a specific focus (e.g. the functional design 88 of interacting surfaces by means of nanotechnology) requires input from more than 89 one classical discipline (in this example: physics, chemistry, biology, mechanical 90 engineering, electronics and tribology). Recurrent concepts in biomimetics can 91 easily be transferred to technology [1,7,8].

The amount of scientific papers that link biology to tribology is increasing (see 93 Fig. 3.2). However, there is still a large unexplored body of knowledge that deals 94 with lubrication and wear in biology but that has not yet been linked extensively to 95 technology (Fig. 3.3). 96

3.2 Biology for Engineers

Engineers may not be primarily interested in evolution or taxonomy. Yet, basic 98 knowledge about typical reactions of biological organisms or groups of organisms 99 to conditions imposed by natural and human activities might prove beneficial for 100 their work. Biology for engineers should be principle-based, viewed as a system 101

wear and Adhesives in Biology

Fig. 3.3 The number of scientific publications in the years 2000–2008 dealing with either wear or adhesives in biology comprise a huge yet unexplored amount of inspiration for technology *Source*: ISI Web of Knowledge, Thomson Reuters, Citation Databases: SCI-EXPANDED (2001-present), CPCI-S (2004-present). http://www.isiknowledge.com, (accessed 5 May 2010)

and might lead to predictive expectations about typical behavioural responses [15, 102 Table 3.1].

Recurring principles of biology are correlation of form and function, modularity 104 and incremental change, genetic basis, competition and selection, hierarchy and 105 multi-functionality [16, 17].

General principles that can be applied by engineers who are not at all involved in 107 biology have been distilled [18]. These basic principles comprise integration instead 108 of additive construction, optimization of the whole instead of maximization of a 109 single component feature, multi-functionality instead of mono-functionality, energy 110 efficiency and development via trial-and-error processes. Systematic technology 111 transfer from biology to engineering thereby becomes generally accessible. 112

Knowledge about the responses of biological systems may lead to useful products 113 and processes, might increase the ability of engineers to transform information 114 from familiar systems to unfamiliar ones and might help to avoid unintended 115 consequences of emerging technologies. 116

Nachtigall promoted analogy search and states that the nature of qualitative 117 analogy research is an impartial, open-minded comparison. He presents numerous 118 examples of insect micromorphology and relates functional mechanisms to technological examples in a visual comparison [19].

In biomimicry, nature is seen as model and mentor (and measure for sustain- 121 ability). Models in nature are studied, and forms, processes, systems and strategies 122 are emulated to solve human problems – sustainably. Biomimicry is a new way of 123 viewing and valuing nature. It introduces an era based not only on what we can 124

		41.1
Biological responses [15]	Possible extrapolation to technical systems	t1.1
Organisms die without water, nutrients, heat sources and sinks and the right amount of		t1.2
oxygen	Proper energy management	
Organisms become ill in the presence of wastes	Proper waste management	t1.3
	Consider two way interaction of device with	t1.4
Organisms modify their environments	environment	
Extra energy will be spent on adaptations	Rather adapt than completely change	t1.5
Organisms, if possible, will move to friendlier		t1.6
environments	Choose promising niches	
Organisms will evolve under environmental		t1.7
pressures	Reactive responsive adaptive devices	
	Information management in an era of	t1.8
Crowding of organisms produces stress	over-information	
Organisms are affected by chemical and		t1.9
mechanical stresses	Reactive devices	
Optimization is used to save energy and nutrient	Resourcefulness	t1.1
Organisms alter themselves to protect against		t1.1
harsh environments	Adaptive devices	
	Sharing of data and results with other	t1.1
Organisms cooperate with other organisms	devices in the same system	
	Input from other devices is used to improve	t1.1
Organisms compete with other organisms	respective device	
Organisms reproduce	Develop self-replicating devices	t1.1
Organisms coordinate activity through communication	Communication of devices with each other to eliminate abundances	t1.1
Organisms maintain stability with exquisite control	Feedback mechanisms inside the devices and within the system	t1.1
	Emerging technologies go through circles	t1.1
Organisms go through natural cycles	from primitive to complex to simple	
Organisms need emotional satisfaction and	Technology should be helpful, and not a	t1.1
intellectual stimulation	burden (cf. openability issues)	
Organisms die	Develop materials with expiration date	t1.1

Table 3.1	Possible extrapolation of bic	plogical responses to technical systems
I HOIC CII	i obbioic entrapolation of oit	logical responses to teeninear systems

extract from the natural world, but also on what we can learn from it [20], for 125 example related to developing better brakes. Not only in 1771 this was an issue 126 (see Fig. 3.4), optimizing brakes is still important today. 127

3.3 Method: The Biomimicry Innovation Method

128

The biomimicry innovation method (BIM, [21]) is a successful method in 129 biomimetics. This method is applied here to identify biological systems, processes 130 and materials that can inspire tribology. Biomimicry is an innovation method that 131

30

Editor's Proof

Fig. 3.4 1771 crash of Nicolas Joseph Cugnot's steam-powered car into a stonewall. Cugnot was the inventor of the very first self-propelled road vehicle, and in fact he was also the first person to get into a motor vehicle accident

seeks sustainable solutions by emulating nature's time-tested patterns and strategies. 132 The goal is to create products, processes and policies – new ways of living – that 133 are well adapted to life on earth over the long haul. 134

The steps in BIM are as follows: Identify function, biologize the question, find 135 nature's best practices and generate product ideas.

Identify Function: The biologists distil challenges posed by engineers/natural 137 scientists/architects and/or designers to their functional essence.

Biologize the Question: In the next step, these functions are translated into 139 biological questions such as 'How does nature manage lubrication?' or 'How does 140 nature bond parts together?' The basic question is 'What would nature do here?' 141

Find Nature's Best practices: Scientific databases as well as living nature itself 142 are used to obtain a compendium of how plants, animals and ecosystems solve the 143 specific challenge. 144

Generate Process/Product Ideas: From these best practices, the biologists generate ideas for cost-effective, innovative, life-friendly and sustainable products and processes. 145

The BIM proves highly useful in habitats with high species variety and therefore 148 high innovation potential (e.g. in the tropical rainforests or in corral reefs), 149 providing a multitude of natural models to learn from and emulate. According to 150 the experience of the US based Biomimicry Guild, about 90% of the generated 151 process/product ideas are usually new to their clients (who include companies such 152 as Boeing, Colgate–Palmolive, General Electric, Levi's, NASA, Nike and Procter 153 and Gamble). 154

There is an abundance of biological literature available. However, only a few 155 of these works concentrate on the functions of biological materials, processes, 156 organisms and systems [19, 22–27]. The Biomimicry Guild is currently undergoing 157 a major endeavour and collects on its web-page http://www.asknature.org 'strategies 158 of nature' together with scientific references and envisaged and already existing 159

bioinspired applications in industry. The 1,245 strategies (status 5 May 2009) are 160 grouped in 8 major sections and comprise answers to the questions 161

How does nature break down?	162
How does nature get, store or distribute resources?	163
How does nature maintain community?	164
How does nature maintain physical integrity?	165
How does nature make?	166
How does nature modify?	167
How does nature move or stay put?	168
How does nature process information?	169

Strategies in 'How does nature maintain community?' of relevance regarding 170 tribology are concerned with maintenance of physical integrity, management of 171 structural forces and prevention of structural failure (Table 3.2). Strategies in 172 'How does nature move or stay put?' with most relevance regarding tribology 173 are concerned with attachment (Table 3.2). The results section below presents the 174 outcome of a thorough screening of these strategies and subsequent clustering and 175 further analysis of especially promising ones regarding tribology. 176

3.4 Results: Biomimetics in Tribology – Best Practices 177 and Possible Applications 178

Application of the BIM concerning wear, shear, tension, buckling, fatigue, fracture 179 (rupture), deformation and permanent or temporal adhesion yields a variety of best 180 practices that comprise biological materials and processes in organisms as diverse 181 as kelp, banana leafs, rattan, diatoms and giraffes (Tables 3.3–3.9). 182

Category	Sub category	t2.1
Manage structural forces (289)	Mechanical wear (30)	t2.2
	Shear (16)	t2.3
	Tension (28)	t2.4
Prevent structural failures (52)	Buckling (14)	t2.5
	Deformation (4)	t2.6
	Fatigue (4)	t2.7
	Fracture (rupture) (30)	t2.8
Attach (102)	Permanently (41)	t2.9
	Temporarily (61)	t2.10
	Category Manage structural forces (289) Prevent structural failures (52) Attach (102)	CategorySub categoryManage structural forces (289)Mechanical wear (30) Shear (16) Tension (28)Prevent structural failures (52)Buckling (14) Deformation (4) Fatigue (4) Fracture (rupture) (30) Permanently (41) Temporarily (61)

 Table 3.2
 Structure of the strategies on AskNature.org relevant for tribology used in this work

The numbers indicate the total amount of strategies in the respective categories (status 5 May 2010).

32

Editor's Proof

3 Biomimetics in Tribology

Biologized			
question: How			
does nature	Nature's best practice	Generated process/product ideas	
build flexible anchors?	Anchor has flexibility: bull kelp [34]	Bioinspired wave and tidal power systems [35]	t3.1
	Chameleon tongues move with an	Lubrication in	t3.2
lubricate fast moving parts?	acceleration of 50 g and are lubricated [36, p. 70]	bionanotechnological devices, fast actuators	
protect seeds from wear?	Seed coat: lotus (<i>Nelumbo nucifera</i>) [37]	Packaging	t3.3
protects trees from damage?	Resin protects damage: conifer trees [38]	Packaging	t3.4
lubricate joints?	Coefficient of friction in hip joints: 0.001 [39–41]	Technical joints, hip implants	t3.5
prevent wear in abrasive	Skin exhibits low friction: sandfish skink [42]; optimized tribosystem: snake skin [43, 45]	Abrasive cutting cools, adaptation	t3.6
maintain sharpness of	Teeth are self-sharpening: American	Self-sharpening tools, abrasive cutting cools, self-sharpening	t3.7
maintain low friction in	beaver [47], sea urchins [48]	hand and power saws [49]	t3.8
nanoscale parts in relative motion?	Moving parts are lubricated: diatoms [50]	3D-MEMS [51]	
protect soft matter against wear?	The skin of cartilaginous fish (<i>Elasmobranchii</i>) is protected by a covering of abrasive placoid scales, called denticles [52, p. 91]; Skin and mucus prevent abrasion: blennies [53].	Self-sharpening tools, abrasive cutting cools, industrial- grade sanders	t3.9
protect bodies from dirt particles?	The body and eyes of stonefly larvae (<i>Capniidae</i>) are protected from sediment particles by a coating of dense hairs and bristles [54, p. 115].	Surface layer of devices that come in contact with abrasive particles	t3.10
control wear of	Long-lived grazers with a side-by-side layered arrangement of enamel, dentine and cement		t3.11
teeth?	[25 , p. 333]	Agricultural tools	
protect skin	Webbed feet of the platypus (<i>Ornithorhynchus anatinus</i>) are used for burrowing by folding back the webbing to expose the	Protect equipment from damage, or from damaging something it comes into contact with when	t3.12
when burrowing?	claws for work [55]	not in use. Gloves	
protect folded structures from	Insect wings [56]	Packaging, manufacturing,	t3.13
protect soft		amsport	t3 14
structures from thorns?	Leathery tongue (<i>Giraffa camelopardalis</i>) [57, p. 61]	Soft but durable packaging replacing hard plastics	

 Table 3.3 Application of the biomimicry innovation method regarding mechanical wear

Possible application scenarios are presented in the third column of this table.

Biologized question:		Generated process/	
How does nature	Nature's best practice	product ideas	
	Spiral fibres strengthen tree trunks [59, pp.28–29]: pine; circular, tapering beams stabilize: plants [60]; Nature achieves high flexural and torsional stiffness in support structures, with minimum material use, by using hollow cylinders as struts and beams		t4.
reinforce materials?	[25, p. 440].	Tough materials	
prevent structures from breaking?	Stretchable architecture resists breakage: bull kelp [61]; joint shaped as suction cup prevents peeling: bull kelp [25, p. 425], Variable postures aid intertidal zone survival: sea palm [25, p. 435]	Tough materials	t4.
build lightweight?	Lightweighting: Scots pine [62]; Bones are lightweight yet strong: birds [63]	Lightweight structures and materials	t4.
	Insect elytra resist shear and cracking: beetles [64]; tissues resist bending under stress: giant green anemone [65]; pulled support stalks have low flow stress: algae [25, p. 437; 66]; Leaves resist bending: trees, p. 580]; Many organisms, including limpets, resist shearing loads temporarily in part thanks to Stefan adhesion, which occurs when a thin layer of viscous liquid separates two surfaces [25]		t4.
resist shear?	p. 427].	Shear resistant materials	

Table 3.4 Application of the biomimicry innovation method regarding shear

Multifunctionality is a key property in biological entities. Therefore, many organisms and strategies are relevant for more than one tribological issue and therefore also appear in more than just one of the tables given below.

The inspiring organisms, ecosystems and natural structures and functions lay a 186 sound foundation to proceed to the next step: detailed experimental investigation of 187 the phenomena of interest. Further analysis concerning the rich flora in Southeast 188 Asia by one of the authors (ICG) might provide further useful input concerning 189 novel approaches regarding tribology. Valuable literature in this regard is available 190 in abundance [e.g. 28–30] and personal presence in Malaysia with direct contact to 191 devoted naturalists such as H.S. Barlow with his 96 acres Genting Tea Estate where 192 he plants rare species and provides perfect environment for his objects of study 193 prove highly beneficial for biomimetics work.

Increasing awareness about the innovation potential of the rainforest might also 195 hopefully cause a paradigm shift in the way locals view the pristine forests. With 196 the fast pace people are currently cutting down pristine tropical forests (e.g. in 197 Asia or Brazil) and the subsequent extinction of a multitude of species, many of 198 which are even not yet known to the public, many inspiring plants and animals 199

34

Editor's Proof

3 Biomimetics in Tribology

Nature's best practice	Generated process/ product ideas	
Stretchable architecture resists breakage: bull kelp [61]; Stretching mechanism prevents fracture: blue mussel [67]; Two-phase composite tissues handle tension: pipevine [68]; Membranes get fatter when stretched: cells [69]; Arterial walls resist stretch disproportionately: cephalopods [25,	Stratakakla matariala	t5.
pp. /-8]; After too much tension is applied: Bones self-heal: vertebrates	Self-healing materials:	t5 ′
[70]; Diatom adhesives self-heal [71]	Self-healing coatings [72]	13.2
Walls prevent collapse under tension: plants [73]; Fluid pressure provides support: blue crab [74]; Pressure provides structural support: blackback land crab [74]	Reinforcement of foldable	t5.3
Pulled support stalks have low flow stress: algae [25, p. 437; 66]	Construction	t5.4
Intricate silica architecture ensures mechanical stability under high tension: diatoms [75–77]	MEMS	t5.5
Crystals and fibres provide strength, flexibility: bones [78]; Byssus threads resist hydrodynamic forces [79]; Silk used for various functions: spiders [80]; Teeth resist compression and tension: animals that chew [25, pp. 332–333]; Elastic ligament provides support, shock absorption: large grazing	8	t5.6
mammals [25, p. 304] Circular, tapering beams stabilize: plants [60]; Buttressing resists uprooting: English oak [25, pp. 431–432]; Resisting shearing forces: limpets [25, p. 427]; Variable postures aid intertidal zone survival: sea palm [25, p. 435]; Leaves resist gravitational loading: broad-leaved trees [25, p. 375]; Tentacles maintain tension as flow increases: marine polychaete worm [81]	Tough materials Stabilize materials	t5.7
Curved spine deals with tension: sloth [52, p. 37]; Low-energy		t5.8
perching: mousebird [82, pp. 240-241]	Tension resistant materials	

Table 3.3 Application of the biominicity innovation method regarding tension	Table 3.5	Application	of the biomimicr	v innovation	method	regarding tension
---	-----------	-------------	------------------	--------------	--------	-------------------

are lost forever, before we even have started to value them. Gebeshuber and co-200 workers have recently proposed a niche tourism concept for Malaysia and Thailand, 201 where corporate tourists and local bioscouts practice biomimetics in rainforests, 202 coastal and marine environments and thereby provide sustainable usage of pristine 203 tropical environment, increased income and employment in the host countries while 204 encouraging conservation and sustainable tourism development [31, 32]. 205

3.4.1 Application of the Biomimicry Innovation Method 206 Concerning Mechanical Wear 207

Wear concerns the erosion of material from a solid surface by the action of 208 another surface. It is related to surface interactions and more specifically the 209 removal of material from a surface as a result of mechanical action. The need for 210

I.C. Gebeshuber et al.

Table 3.6	Application of	f the BIM	regarding	buckling,	fatigue and	fracture (ru	pture)

Function	Biologized question: How does nature Nature's best practice	Generated process/ product ideas	
	Stems resist buckling: hamboo and other plants [83	1	t6
	25, p. 3781: Quills resist buckling: porcupine [84]:		
	Siliceous skeleton provides support: Venus flower		
	basket [85]: Shape of feather shafts protect from		
	wind: birds [25, p. 385]; Crystals and fibres		
	provide strength, flexibility: bones [59, p. 32–33;		
	78]: Organic cases provide protection: bagworm		
	moths [86]; Bones absorb compression shock:		
	birds [52, p. 39]; Leaves resist bending: trees [25,		
	p. 580]; Skeleton provides support: sponges [25,		
	p. 439]; Flexural, torsional stiffness with minimal		
	material use: organisms [25, p. 440]; Spines work		
	as shock absorbers: West European hedgehog [87];	Bioinspired buckling	
Buckling	Stems vary stiffness: scouring horsetail [88]	resistant scaffolds	
C	Plants survive repeated drving and rehydration: lesser		t6.
	clubmoss [89]; Wood resists fracture: trees [25,		
	p. 343]; Pulled support stalks have low flow stress:		
	algae [25, p. 437; 66]; Thin 'shells' resist impact		
	loading: sea urchins [25, p. 388; 90–92]; Wings	Bioinspired fatigue	
Fatigue	fold multiple times without wear: beetles [56]	resistant materials	
e	Bones self-heal: vertebrates [70]: Iron sulphide		t6.
	minerals reinforce scales: golden scale snail [93];		
	Insect elytra resist shear and cracking: beetles [64];		
	Tendons and bones form seamless attachment:		
	Chordates [94]; Leaves resist tearing: brown algae		
	[59, pp. 35–36]; Microscopic holes deter fractures:		
	starfish [25, p. 338–339]; Spicules help resist		
	fractures: sponges [25, p. 337]; Extensibility helps		
	stop spread of cracks: macroalgae [25, p. 338; 34,		
	95]; Shell resists cracking: scallop [25,		
	pp. 339–340]; Leaves resist crosswise tearing:		
	grasses [25, p. 340]; Antlers resist fracture:		
	mammals [25, p. 349]; Resin protects damage:		
	conifer trees [38]; Crystals and fibres provide		
	strength, flexibility: bones [78]; Arterial walls		
	resist stretch disproportionately: cephalopods [25,		
	pp. 7–8]; Hooves resist cracking: horse [96, 97];		
	Continuous fibres prevent structural weakness:		
	trees [98]; Ctenoid scales form protective layer:		
	bony fish [52, p. 86]; Leaves resist bending: trees		
Fracture	[25, p. 580]; Flexural, torsional stiffness with	Bioinspired fracture	
(rupture)	minimal material use: organisms [25, p. 440].	resistant materials	

mechanical action, in the form of contact due to relative motion, is an important 211 distinction between mechanical wear and other processes with similar outcomes 212 (e.g. chemical corrosion) [33]. Table 3.3 summarizes the application of the BIM 213 regarding mechanical wear. 214

Biologized question: How does nature	Nature's best practice	Generated process/product ideas	
manage changes in humidity?	Plants survive repeated drying and rehydration: lesser clubmoss [10, p. 476]	Humidity resistant materials	t7.1
build stable scaffolds?	Crystals and fibres provide strength, flexibility: bones [59, pp. 32–33; 78]; Venus blower basket [85]	Scaffold in tissue engineering	t7.2
protect soft parts against deformation?	Skin properties derive from arrangement of components: mammals [99]	Mechanical protection (e.g. food packaging)	t7.3
provide mechanical stability?	Thin 'shells' resist impact loading: sea urchins [25, p. 388; 90–92]	Hard coated materials	t7.4

Table 3.7 Application of the BIM regarding deformation

Function	Nature's best practice	Generated process/ product ideas	t8.1 t8.2
		Hinges and interlocking devices in	
Permanent adhesion via mechanical		micromachinery produced via rapid	
attachment	Diatom chains [13, 50, 71, 76]	prototyping	t8.3
	Sticky proteins serve as glue: mammals [102]; Tendons and honce form scambers attachment		
	[63, 78]; Anchor has flexibility:		
	together: grass trees [102]: Mucus		
	glues sand and rock: marine		
	worms [52, pp. 32–33]; Sticky		
	proteins serve as glue: blue mussel		
	[67]; Sticky berries adhere:		
Permanent adhesion via	Stick to various surfaces: Virginia	Novel adhesives that can be produced in ambient	t8 /
Permanent adhesion	creeper [104], abaione shens [105]	conditions [100]	10.4
underwater via wet		Chemically stable	
adhesives	Benthic diatoms [50, 71, 107]	underwater adhesives	t8.5
V	Eggs attached securely to hairs with a cement like substance: body lice		
Permanent adhesion via	[108]; Durable casing built with	Company produced at	
cement-like material	faecal cement [110]	ambient conditions	t8.6
Permanent adhesion via	Adhesive glues prey: velvet worms		1010
fluid substances that	[36, p. 78]; Saliva used as glue:		
harden in air or water	swifts [82, p. 239]; Threads adhere underwater: sea cucumber [111]	Novel two component adhesives	t8.7

 Table 3.8 Application of the BIM regarding permanent attachment

ン

		Velcro analogues with no need for	
		counterparts; novel structures	
Temporary adhesion via mechanical	Macro to milliscale: spinal column has strength and flexibility: armored shrew (macro) [82, p. 304]; Tendrils enable upward climb: rattan palm [112]; Adhering to multiple	and materials for hanging constructions; novel actuators;	
attachment devices	substrates: blackberry [57, p. 11]	attachment of fragile structures	t9.1
	Microscale: special tongue captures soft prey: long-beaked echidna (<i>Tuchyglossus</i> = swift tongue; <i>aculeatus</i> = furnished with spines) [113]; Insects with two pairs of		
	wings have them work in unison by attaching the wings in various ways, with nooks, folds or catches [114]; Design features aid efficient attachment: lice [115]; Feet grip		
	waxy leaves: leaf beetle [116]; Running on waxy leaves: Arboreal ants [25, p. 430;		f0 7
	Nanoscale: biological attachment devices from the micro to the nano range [118]		t9.3
Temporary adhesion via			
dry adhesives	Gecko [119, 120]	Dry adhesives [121]	t9.4
Temporary adhesion via wet adhesives	Mucus takes on adhesive qualities: dusky arion slug [122]; Capillary action aids adhesion: European blowfly [123, 124]; Feet adhere temporarily: aphids [125]	Novel wet adhesives	t9.5
:	Eggs adhere in and out of water: midwife toad [126]; Parasite attaches underwater:		
Temporary adhesion underwater via wet	copepod [127]; Glue sticks underwater: giant water bug [126, p. 52]; motile diatoms [128]: Adhesive works under water: an aquatic bacterium (nature's strongest glue)	Adhesives that can cure	
adhesives	[129]	underwater	t9.6
Temporary adhesion in	White blood cells adhere closely: mammals [130]; White blood cells roll and stick:	Switchable adhesives (release after	
switchable adhesives	mainmais [131]; Sucky berries aunere: European and Ausuanan misuetoe [37, pp. 229–231; 103];	signal, adapt onnung suengun to signal)	t9.7
	Feet of insects adjust to rough or smooth surfaces by engaging either claws or adhesive foot-pads [115]; Hooks and silk pads aid underwater attachment: blackfly [54, pp. 116–117]; Keyhole limpets attach using either suction or glue-like adhesion [132]; Barnacle cyprids employ wet and dry adhesion [133]; Disk-like structures		I.C. Gebes
	adhere to smooth surfaces: Spix's disk-winged bat (Stefan and capillary adhesion) [25, p. 427]; Feet grip waxy leaves: leaf beetle [116, 134]; Multiple component glue	Bioinspired reversible wet/dry	huber
Mixed	aids underwater adhesion: barnacle [135]	adhesives [136]	et 63.61

ole 3.9 Application of the BIM regarding temporary attachm

Editor's Proof

- Editor's Proof
 - 3 Biomimetics in Tribology

The lubrication strategies applied in chameleon tongues could for example 215 be investigated regarding lubrication in bionanotechnological devices and fast 216 actuators. 217

At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded 222 by the accelerator muscle. High-speed recordings of *Chamaeleo melleri* and 223 *C. pardalis* reveal that peak powers of 3,000 W/kg are necessary to generate the 224 observed accelerations. The key structure in the projection mechanism is probably 225 a cylindrical connective-tissue layer, which surrounds the entoglossal process and 226 acts as lubricating tissue. Thus, the chameleon utilizes a unique catapult mechanism 227 that is very different from standard engineering designs [58]. Industrial sectors 228 interested in this strategy could be manufacturing, food and medicine; possible 229 application ideas comprise bio-friendly lubrication for use in industry and actuators 230 that lengthen quickly.

3.4.2 Application of the Biomimicry Innovation Method232Concerning Shear233

Shear concerns a deformation of an object in which parallel planes remain parallel 234 but are shifted in a direction parallel to themselves. In many man-made materials, 235 such as metals or plastics, or in granular materials, such as sand or soils, the shearing 236 motion rapidly localizes into a narrow band known as a shear band. In that case, all 237 the sliding occurs within the band, while the blocks of material on either side of the 238 band simply slide past one another without internal deformation. A special case of 239 shear localization occurs in brittle materials when they fracture along a narrow band. 240 Then, all subsequent shearing occurs within the fracture. Table 3.4 summarizes the 241 application of the BIM regarding shear. 242

3.4.3 Application of the Biomimicry Innovation Method 243 Concerning Tension 244

Tension is the magnitude of the pulling force exerted by a string, cable, chain or 245 similar object on another object. It is the opposite of compression. Tension is a 246 force and is always measured parallel to the string on which it is applied. Table 3.5 247 summarizes the application of the BIM regarding tension. 248

I.C. Gebeshuber et al.

3.4.4 Application of the Biomimicry Innovation Method249Concerning Buckling, Fatigue, Fracture (Rupture)250and Deformation251

Buckling, fatigue, fracture (rupture) and deformation are well-known phenomena; 252 their specific meaning in tribology is summarized below. Buckling is a failure 253 mode characterized by a sudden failure of a structural member subjected to high 254 compressive stresses, where the actual compressive stress at the point of failure 255 is less than the ultimate compressive stresses that the material is capable of 256 withstanding. This mode of failure is also described as failure due to elastic insta-257 bility. Mathematical analysis of buckling makes use of an axial load eccentricity 258 that introduces a moment, which does not form part of the primary forces to 259 which the member is subjected. *Fatigue* is the progressive and localized structural 260 damage that occurs when a material is subjected to cyclic loading. The maximum 261 stress values are less than the ultimate tensile stress limit, and may be below 262 the yield stress limit of the material. Fracture mechanics is an important tool in 263 improving the mechanical performance of materials and components. It applies the 264 physics of stress and strain, in particular the theories of elasticity and plasticity, 265 to the microscopic crystallographic defects found in real materials to predict the 266 macroscopic mechanical failure of bodies. Rupture or ductile rupture describes the 267 ultimate failure of tough ductile materials loaded in tension. Rupture describes a 268 failure mode in which, rather than cracking, the material 'pulls apart', generally 269 leaving a rough surface. Deformation denotes a change in the shape or size of an 270 object due to an applied force. Tables 3.6 and 3.7 summarize the application of 271 the BIM regarding buckling, fatigue and fracture (rupture); and deformation. The 272 biologized question 'How does nature manage changes in humidity?' (Table 3.7, 273 top) is a question resulting from reverse engineering, because we already know that 274 shape change in nature is often initiated by changes in humidity. 275

3.4.5 Application of the Biomimicry Innovation Method276Concerning Attachment277

To stay put is important for many organisms; a plenitude of different methods for 278 mechanical attachment or chemical bonding had been evolved. In this book chapter, 279 mechanisms to stay put are divided in to mechanisms for permanent and temporary 280 attachment. 281

Permanent adhesion can occur via mechanical attachment. One intriguing example for this on the small scale is diatom chains with hinges and interlocking devices 283 that are just some hundreds of nanometers large and that connect the single celled 284 organisms to chains. Some of these connections (still functional) can be found in 285 fossils of diatoms that lived tens of millions of years ago [100]. Most man-made 286 adhesives fail in wet conditions, owing to chemical modification of the adhesive or 287

40

Editor's Proof

its substrate. Therefore, bioinspiration from natural underwater adhesives is very 288 much in need. The adhesive that *Eunotia sudetica*, a benthic freshwater diatom 289 species, produces to attach itself to a substrate has for example modular, self-290 healing properties [50]. Another class of adhesives comprises cement-like materials 291 and adhesives that dry in air. Dry adhesives as they occur in the gecko have been 292 thoroughly investigated, and currently first man-made bioinspired gecko adhesives 293 are produced [101]. Tables 3.8 and 3.9 summarize the application of the BIM 294 regarding permanent and temporary attachment, respectively. In Table 3.9, the 295 mechanical attachment devices for the temporal attachment are structured according 296 to their size (millimetres and above, micrometres and nanometres) – this should help 297 prevent problems with any scaling effect when doing the technology transfer from 298 biology to technology.

Climbing palms, such as the highly specialized rattan palms in the Southeast 300 Asian rainforests, evolved leaves armed with hooks and grapnels for climbing 301 (Fig. 3.5). Some species of rattan palms develop a climbing organ known as 302 the flagellum, which also bears hooks. The leaves are constructed to optimize 303 bending and torsion in relation to the deployment of re-curved hooks. It is a joint 304 phenomenon that hooks in organisms increase in strength toward their base, and 305 that the hooks always fail in strength tests before the part of the organism they 306 are attached to. The sizes and strengths of the hooks differ between species and 307 are related to body size and ecological preference. Larger species produce larger 308 hooks, but smaller climbing palms of the understory deploy fine sharp hooks that 309 are effective on small diameter supports as well as on large branches and trunks. 310 Climbing organs in palms differ significantly from many vines and lianas having 311 more perennial modes of attachment [137]. 312

Fig. 3.5 Details of the climbing palm rattan. The hooks protect the plant against predators and assist in climbing and growing through the understory in the tropical rain forests. Image reproduced with permission, © F. Saad, IPGM, Malaysia

'The front tip, from which all growth comes, explores with extremely long, thin tendrils 313 equipped along their length with needle-sharp curved hooks. If these snag your arm - and 314 the tendrils are so thin that they can easily be overlooked – they can rip both your shirt and 315 your flesh. With these, it hitches itself on to an established tree and actively grows upwards. 316 Sometimes the support is not strong enough to bear the extra load and it collapses, but the 317 rattan is not deterred. It continues to grow as it sprawls across the forest floor and does so 318 with such vigour that some species develop longer stems than any other plant and may reach 319 a length of over five hundred feet.' [57, pp. 162–163] 320

Bioinspired products and application ideas comprise fasteners, clips, snaps, slide 321 fastener tapes and a novel Velcro analogue (possibly noiseless!) with no need for a 322 counterpart. 323

3.5 Summary and Outlook

This chapter presented a multitude of best practices from nature concerning melio-325 rated technological approaches of various tribological issues. As next step, detailed investigations on the relevant properties of the best practices shall be performed, and the underlying principles shall be extracted. Such principles shall then be incorporated into devices, systems and processes and thereby yield biomimetic technology with increased tribological performance. 330

To accelerate scientific and technological breakthroughs, we should aim at 331 having a context of knowledge: the gap between scientific insights and technological 332 realization should be bridged [138]. Especially in a field which is as application-333 oriented as biomimetics related to tribology, care has to be taken that the scientific 334 findings actually can lead to real-world applications. As Gebeshuber and co-workers 335 outlined in 2009 [1] in their 'three gaps theory', there are gaps between inventors, 336 innovators and investors (see Fig. 3.6). 'Inventor gap' denotes the gap between 337

Fig. 3.6 The three gaps theory regarding inventors, innovators and investors. ©2009 PEP Publishing, London. Reproduced from [1] with permission

knowing and not knowing that has to be overcome to have ideas. The 'innovator 338 gap' denotes the gap between knowledge and application of the knowledge. The 339 'investor gap' denotes the gap between the application and the creation of the 340 product. To prevent being trapped in the inventor, innovator or investor gap, a cross 341 dialogue is necessary, a pipeline from 'know-why' to 'know-how' to 'know-what', 342 from the inventor who suggests a scientific or technological breakthrough to the 343 innovator who builds the prototype to the investor who mass produces the product 344 and brings the product to the consumer. Currently, and this is a major problem, at 345 universities worldwide huge amounts of knowledge are piled up with little or no 346 further usage. We know a lot, we can do relatively little. We need a joint language 347 and a joint vision. This is specifically of relevance in tribology, since tribological 348 research is ultimately linked to real-world applications. Applying biomimetics to 349 tribology could provide such a pipeline.

On the basis of the long-standing experience of research at the interface between 351 tribology and biology [e.g. 2, 8, 12, 13, 14, 100], Gebeshuber and co-workers 352 recently introduced a concept for a dynamic new way of scientific publishing and 353 accessing human knowledge [138]. The authors propose a solution to the dilemma 354 that a plenitude of biology papers that deal with friction, adhesion, wear and 355 lubrication were written solely for a biology readership and have high potential 356 to serve as inspiration for tribology if they were available in a language or in an 357 environment accessible for tribologists (cf. Figs. 3.2 and 3.3). The British publishing 358 house Professional Engineering Publishing will host the first scientific journal that (359) aims at turning the dynamic publishing concept into reality. The editor of this 360 new journal, who is one of the authors of this chapter, ICG, will thereby get the 361 chance to possibly revolutionize the way we are doing science, and contribute to 362 overcoming the gaps between inventor, innovator and investor, by presenting and 363 managing research results in a way that is accessible by people with different kinds 364 of backgrounds and levels of education. 365

AcknowledgementsThe Austrian Society for the Advancement of Plant Sciences has financed366part of this work via the Biomimetics Pilot Project 'BioScreen'.367

Living in the tropics and continuous exposure to high species diversity in the tropical rainforests 368 is a highly inspirational way to continuously do biomimetics. Researchers have the current 369 problems they are dealing with always at the back of their head, and an inspiring environment 370 aids in developing completely new ideas, approaches and concepts. The Vienna University of 371 Technology, especially Profs. F. Aumayr, H. Störi and G. Badurek, are acknowledged for enabling 372 one of the authors (ICG) three years of research in the inspiring environment in Malaysia. 373

References

- 1. I.C. Gebeshuber, P. Gruber, M. Drack, A gaze into the crystal ball biomimetics in the year
 375

 2059. Procd. Inst. Mech. Eng. Part C J Mech Engg Sci 223(C12), 2899–2918 (2009)
 376

 2059. Control of the part C J Mech Engg Sci 223(C12), 2899–2918 (2009)
 376
- I.C. Gebeshuber, B.Y. Majlis, H. Stachelberger, Tribology in Biology: Biomimetic studies 377 across dimensions and across fields. Int. J. Mech. Mat. Engg. 4(3), 321–327 (2009) 378

43

Editor's Proof

3.	B. Bhushan, B.K. Gupta, <i>Handbook of Tribology: Materials, Coatings, and Surface Treat-</i> ments (McGraw-Hill Publishing Company, New York, 1991)	379
4	G Stachowiak AW Batchelor Experimental Methods in Tribology (Elsevier BV	381
Т.	Amsterdam, 2004)	382
5.	. C.P. Snow, The Rede Lecture 1959. The Two Cultures & The Scientific Revolution (Cambridge	383
	University Press, UK, 1959)	384
6.	A. Nordmann, in Bionik - Aktuelle Forschungsergebnisse in Natur-, Ingenieur- und Geis-	385
	teswissenschaft, ed. by T. Rossmann, C. Tropea. Was ist TechnoWissenschaft? - Zum Wandel	386
	der Wissenschaftskultur am Beispiel von Nanoforschung und Bionik (Springer, Berlin, 2005)	387
	pp. 209–218	388
7.	I.C. Gebeshuber, M. Drack, An attempt to reveal synergies between biology and engineering	389
	mechanics. J. Mech. Engg. Sci. 222, 1281–1287 (2008)	390
8.	I.C. Gebeshuber, B.Y. Majlis, L. Neutsch, F. Aumayr, F. Gabor, Nanomedicine and biomimet-	391
	ics: life sciences meet engineering & physics, in Proceedings of the 3rd Vienna International	392
	Conference on Micro- and Nanotechnology, Viennano09, Editors, 2009, 17–23	393
9.	B. Bhushan, Biomimetics: lessons from nature-an overview. Phil. Transac. Roy. Soc. A. 367,	394
	1445–1486 (2009)	395
10.	Y. Bar-Cohen, Biomimetics: Biologically Inspired Technologies (CRC Press, Boca Raton,	396
	FL, 2005)	397
11.	I.C. Gebeshuber, M. Drack, M. Scherge, Tribology in biology. Tribology 2(4), 200-	398
	212, (2008)	399
12.	I.C. Gebeshuber, A. Pauschitz, F. Franek, Biotribological model systems for emerging nano-	400
	scale technologies, in Proceedings of 2006 IEEE Conference on Emerging Technologies -	401
	Nanoelectronics, Editors, 2006, 396–400	402
13.	I.C. Gebeshuber, H. Stachelberger, B.A. Ganji, D.C. Fu, J. Yunas, B.Y. Majlis, Exploring	403
	the innovational potential of biomimetics for novel 3D MEMS. Adv. Mat. Res. 74, 265-	404
	268 (2009)	405
14.	I.C. Gebeshuber, H. Stachelberger, M. Drack, in <i>Life Cycle Tribology</i> , Tribology and Interface	406
	Engineering Series 48, ed. by B.J. Briscoe. Diatom Tribology (Elsevier, Amsterdam, 2005)	407
	pp. 365–370	408
15.	A.T. Johnson (2009) <i>Biology for engineers</i> . In preparation	409
16.	P. Fratzl, R. Weinkamer, Nature's hierarchical materials. Prog. Mat. Sci. 52(8), 1263–1334	410
	(2007)	411
17.	J.F.V. Vincent, Deconstructing the design of a biological material. J. Theor. Biol. 236, 73–78	412
	(2005)	413
18.	W. Nachtigall, Vorbild Natur: Bionik-Design für funktionelles Gestalten (Springer,	414
	Berlin, 1997)	415
19.	. W. Nachtigall, <i>Das große Buch der Bionik</i> (Deutsche Verlagsanstalt, Germany, 2003) p. 214f	416
20.	http://www.asknature.org/article/view/what_is_biomimicry	417
21.	Biomimicry Innovation Method (Biomimicry Guild, Helena, MT, USA, 2008)	418
22.	S. Vogel, Life's Devices: The Physical World of Animals and Plants (Princeton University	419
	Press, Princeton, 1988)	420
23.	S. Vogel, Life in Moving Fluids: The Physical Biology of Flow (Princeton University Press,	421
	Princeton, 1996)	422
24.	S. Vogel, Cats' Paws and Catapults: Mechanical Worlds of Nature and People (WW Norton	423
	& Co, New York, 1998)	424
25.	S. Vogel, Comparative Biomechanics: Life's Physical World (Princeton University Press,	425
	Princeton, 2003)	426
26.	S. vogel, <i>Nature's Flyers: Birds, Insects, and the Biomechanics of Flight</i> (The Johns Hopkins	427
~~	University Press, USA, 2004)	428
27.	M. Scherge, S.S.N. Gorb, <i>NanoScience and Technology</i> (Springer, Germany, 2001)	429
28.	A.K. Wallace, The Malay Archipelago (Stanfords Travel Classics) (John Beaufoy Publishing	430
	Ltd., Uxford, UK, 2008)	431

44

Editor's Proof

AQ1

3 Biomimetics in Tribology

	29.	H.S. Barlow, <i>An introduction to the moths of South East Asia</i> (Malaysian Nature Society, Kuala Lumpur, Malaysia, 1982)	432 433
	30.	H.F. Macmillan (revised by H.S. Barlow, I. Enoch, R.A. Russell) <i>H.F. Macmillan's tropical</i>	434
		planting and gardening (Malaysian Nature Society, Kuala Lumpur, Malaysia, 1991)	435
	31.	I.C. Gebeshuber, B.Y. Majlis, 3D corporate tourism: A concept for innovation in nanomateri-	436
		als engineering. Int. J. Mat. Engg. Innov. (2010) in press	437
	32.	R. Esichaikul, M. Macqueen, I.C. Gebeshuber, 3D corporate tourism: Application-oriented	438
		problem solving in tropical rainforests, in <i>Proceedings 8th Asia-Pacific CHRIE Conference</i> ,	439
	22	Fattaya, Inaniano, 5–6 June 2010, in press	440
	55.	3.7. withanis, wear and wear particles – Some fundamentals. Thou: Int. $36(10)$, $805-870$ (2005)	442
	34.	M. Denny, B. Gaylord, The mechanics of wave-swept algae. J. Exp. Biol. 205, 1355-	443
	25	1362 (2002)	444
	35.	Australian company BioPower Systems Pty. Ltd. (http://www.biopowersystems.com/,	445
	36	Accessed 5 May 2010 I Downer Weird Nature: An Astoniching Exploration of Nature's Strangest Rehavior (Firefly	440 447
	50.	Books Ontario Canada 2002)	448
	37.	J. Shen-Miller, Sacred lotus, the long-living fruits of China Antique, Seed Sci. Res. 12(03)	449
		131–143, (2007)	450
	38.	N. Kamata, in Mechanisms and deployment of resistance in trees to insects, ed. by	451
		M.R. Wagner, K.M. Clancy, F. Lieutier, T.D. Paine. Deployment of Tree Resistance to Pests	452
		in Asia (Kluwer Academic Publishers, Dordrecht, NL, 2002) p. 277	453
	39.	F.C. Linn, Lubrication of animal joints. I. The arthrotripsometer. J. Bone Joint Surg. Am. 49,	454
	10	10/9–1098 (19/6)	455
	40.	C.W. McCutchen, Mechanism of animal joints: sponge-hydrostatic and weeping bearings.	450
	41	A Unsworth D Dowson V Wright The frictional behavior of human synovial joints – Part	457
	71.	I: natural joints. Trans. Am. Soc. Mech. Eng. F 97F. 369–376 (1975)	459
	42.	W. Baumgartner, F. Saxe, A. Weth, D. Hajas, D. Sigumonrong, J. Emmerlich, M. Singheiser,	460
		W. Bohme, J.M. Schneider, The sandfish's skin: morphology, chemistry and reconstruction.	461
		J. Bionic Eng. 4 (1), 1–9 (2007).	462
	43.	H.A. Abdel-Aal, S. Mezghani, M. El Mansori, Nano-structure and multi scale surface	463
401		characterization of shed ball python skins compared to human skin. Int. J. Surf. Sci.	464
AQT	4.4	(2009) in press	465
	44.	H.A. Addel-Adi, M. El Manson, S. Mezghani, Multi scale surface characterization of sned ball puthon chine compared to human skin. Tribol L att. 37 (2) 517–527 (2010)	400
	45	H A Abdel Aal M El Mansori IC Gebeshuber in ' <i>Biomimetics – Materials Structures</i>	407
	ч.).	and Processes Examples Ideas and Case Studies', ed. by Bruckner D., Gruber P. Hellmich	469
		C., Schmiedmayer HB., Stachelberger H., Gebeshuber I.C. Python regius (Ball Python) shed	470
		skin: Biomimetic analogue for function-targeted design of tribo-surfaces. Series: Biological	471
		and Medical Physics, Biomedical Engineering, Series Editor Claus Ascheron. (Springer	472
AQ2		Publishing, NY, 2009) submitted	473
	46.	H.A. Abdel-Aal, M. El Mansori, Multi scale characterization of surface topography of ball	474
		python (Python Regius) shed skin for possible adaptation in plateau honed surfaces. Wear	475
	17	(2009), submitted P.M. Josefkal. A functional interpretation of the masticatory system and palaoacology of	4/0
	47.	entelodonts Paleobiol 16(4) 459–482 (1990)	478
	48.	Y. Maa, B. Aichmayer, O. Paris, P. Fratzl, A. Meibom, R.A. Metzler, Y. Politi, L. Addadi.	479
		P.U.P.A. Gilbert, S. Weiner, The grinding tip of the sea urchin tooth exhibits exquisite control	480
		over calcite crystal orientation and Mg distribution. Proc. Natl. Acad. Sci 106(15), 6048-	481
		6053 (2009)	482
	49.	H.H. Payson, Keeping the Cutting Edge: Setting and Sharpening Hand and Power Saws	483
		(Wooden Boat Publications, Maine, USA, 1985)	484

Editor's	Proof	
46		

50.	I.C. Gebeshuber, J.H. Kindt, J.B. Thompson, Y. Del Amo, H. Stachelberger, M. Brzezinski,	485
	G.D. Stucky, D.E. Morse, P.K. Hansma, Atomic force microscopy study of living diatoms in	486
	ambient conditions. J. Microsc. 212 (Pt3), 292–299 (2003)	487
51.	I.C. Gebeshuber, H. Stachelberger, B.A. Ganii, D.C. Fu, J. Yunas, B.Y. Mailis, Exploring	488
	the innovational potential of biomimetics for novel 3D MEMS Adv Mat Res 74 265-	489
	268 (2000)	490
52	S. Foy. Grand Design: Form and Colour in Animals (PLA Publishing Limited for LM Dent.	401
52.	S. Foy, Grand Design: Form and Colour in Animals (BLA Publishing Linned for J.M.Dent	491
50	& Sons Ltd, Aldine House, London, UK, 1982)	492
53.	M.H. Horn, R.N. Gibson, in Life at the Edge: Readings from Scientific American Magazine,	493
	ed. by J.L. Gould, C.G. Gould. Intertidal Fishes (Freeman W.H. and Co., New York, USA,	494
	1989), 61–62	495
54.	P.S. Giller, B. Malmqvist, The Biology of Streams and Rivers (Oxford University Press,	496
	USA, 1998)	497
55.	D. Attenborough, Life on Earth (Little, Brown and Company, Boston, MA, 1979) p. 204	498
56.	F. Haas, Evidence from folding and functional lines of wings on inter-ordinal relationships in	499
	Pterygota. Arthropod Systemat. Phylog. 64(2), 149–158 (2006)	500
57.	D. Attenborough. The Private Life of Plants: A Natural History of Plant Behavior (BBC)	501
	Books, London, UK, 1995)	502
58	IH de Groot II van Leeuwen Evidence for an elastic projection mechanism in the	503
50.	chameleon tongue. Proc. Biol. Sci. 271(1540), 761–770 (2004)	504
50	H Tributsch How Life Lagrand to Ling (The MIT Proce Combridge MA USA 1084)	505
59.	A. Beseles C. Mereles D. Crean Mechanical momenties of Customela rine 2 hu 4's Ferret	505
60.	A. Rosales, G. Morales, D. Green, Mechanical properties of Guatemata pine 2 by 4 s. Forest	507
<i>~</i> 1	Prod. J. 45 (10), 81–84 (1995)	507
61.	M.A.R. Koehl, S.A. Wainwright, Mechanical adaptations of a giant kelp. Limnol. Oceanogr.	508
	22, 1067–1071 (1977)	509
62.	C. Mattheck, Teacher tree: the evolution of notch shape optimization from complex to simple.	510
	Eng. Fract. Mech. 73, 1732–1742 (2006)	511
63.	J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton,	512
	USA, 2006)	513
64.	J. Fan, B. Chen, Z. Gao, C. Xiang, Mechanisms in failure prevention of bio-materials and	514
	bio-structures. Mech. Adv. Mat. Struct. 12(3), 229-237 (2005)	515
65.	M.A.R. Koehl, Mechanical organization of cantilever like sessile organisms: sea anemones.	516
	J. Exp. Biol. 69 (1), 127–142 (1977)	517
66.	M.A.R. Koehl, How do benthic organisms withstand moving water. Amer. Zoologist. 24, 57–	518
	70 (1984)	519
67	G.E. Fantner, F. Oroudiev, G. Schitter, L.S. Golde, P. Thurner, M.M. Finch, P. Turner,	520
07.	T Gutsmann DE Morse H Hansma Sacrificial bonds and hidden length: unraveling	521
	molecular mesostructures in tough materials. Biophys. J. $00(A)$ 1411–1418 (2006)	521
68	L Kohlar H C Spatz Micromachanics of plant tissues beyond the linear electic range	522
08.	E. Roller, H.C. Spatz, whereincentances of plant tissues beyond the inical-clastic range. $D_{init} 215(1) 22 40 (2002)$	525
(0)	P I a I a a A have been a final method and Network 114, 502, 504 (2001)	524
69. 70	R. Lakes, A broader view of memoranes. Nature 414, $503-504$ (2001)	525
70.	E. Canalis, Notch signaling in osteoblasts. Sci. Signal. 1(17), pe17 (2008)	526
71.	I.C. Gebeshuber, J.B. Thompson, Y. Del Amo, H. Stachelberger, J.H. Kindt, In vivo nanoscale	527
	atomic force microscopy investigation of diatom adhesion properties. Mat. Sci. Technol. 18,	528
	763–766 (2002)	529
72.	A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Progr. Org. Coat.	530
	55(3), 244–253 (2006)	531
73.	D.F. Cutler, in Nature and Design, ed. by M.W. Collins, M.A. Atherton, J.A. Bryant. Design	532
	in Plants (WIT Press, Southampton, Boston, USA, 2005) pp. 99-100	533
74.	J.R.A. Taylor, W.M. Kier, A pneumo-hydrostatic skeleton in land crabs. Nature 440(7087).	534
	1005 (2006)	535
75	C.E. Hamm, R. Merkel, O. Springer, P. Jurkoic, C. Maier, K. Prechtel, V. Smetacek	536
	Architecture and material properties of diatom shells provide effective mechanical protection	537
	Nature 421 (6925) 841–843 (2003)	538
	Tuture Ter(0723), 071-073 (2003)	550

- Editor's Proof
 - 3 Biomimetics in Tribology
 - 76. I.C. Gebeshuber, R.M. Crawford, Micromechanics in biogenic hydrated silica: hinges and 539 interlocking devices in diatoms. Proc. Inst. Mech. Eng. Part J: J. Engg. Tribol. 220(J8), 787–540 796 (2006)
 - 77. R.M. Crawford, I.C. Gebeshuber, Harmony of beauty and expediency. Sci. First Hand 5(10), 542 30–36 (2006) 543
 - 78. M.J. Buehler, Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18(29), 295102(9p) (2007)
 545
 - 79. M.W. Denny, *Biology and the Mechanics of the Wave-Swept Environment* (Princeton University Press, Princeton, USA, 1988)
 547
 - M. Xu, R.V. Lewis, Structure of a protein superfiber: spider dragline silk. Proc. Natl. Acad. 548 Sci. USA 87(18), 7120–7124 (1990)
 - 81. A.S. Johnson, Sag-mediated modulated tension in terebellid tentacles exposed to flow. Biol. 550
 Bull. 185, 10–19 (1993) 551
 - M.E. Fowler, R.E. Miller, Zoo and Wild Animal Medicine (W.B. Saunders Co., Philadelphia, 552 USA 2003) 553
 - K. Schulgasser, A. Witztum, On the strength, stiffness, and stability of tubular plant stems 554 and leaves. J. Theor. Biol. 155, 497–515 (1992) 555
 - 84. G.N. Karam, L.J. Gibson, Biomimicking of animal quills and plant stems: natural cylindrical 556 shells with foam cores. Mat. Sci. Engg C 2(1–2), 113–132 (1994) 557
 - J.C. Weaver, J. Aizenberg, G.E. Fantner, D. Kisailus, A. Woesz, P. Allen, K. Fields, M.J. 558 Porter, F.W. Zok, P.K. Hansma, P. Fratzl, D.E. Morse, Hierarchical assembly of the siliceous 559 skeletal lattice of the hexactinellid sponge *Euplectella aspergillum*. J. Struct. Biol. **158**(1), 560 93–106 (2007) 561
 - 86. E. Tsui, Evolutionary Architecture: Nature as a Basis for Design (Wiley, New York, 1999) 562
 p. 128 563
 - 87. J.F.V. Vincent, Survival of the cheapest. Mat. Today 5(12), 28-41 (2002)
 - T. Speck, T. Masseleter, B. Prum, O. Speck, R. Luchsinger, S. Fink, Plants as concept generators for biomimetic lightweight structures with various stiffness and self-repair mechanisms. 566 J. Bionics Engg. 1(4), 199–205 (2004) 567
 - 89. Y. Bar-Cohen, *Biomimetics: Biologically Inspired Technologies* (CRC/Taylor & Francis, Boca 568 Raton, FL, USA, 2006)
 569
 - 90. M. Telford, Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105, 125–134 (1985)
 571
 - O. Ellers, M. Telford, Causes and consequences of fluctuating coelomic pressure in sea urchins. Biol. Bull. 182(3), 424–434 (1992)
 573
 - 92. O. Ellers, A.S. Johnson, P.E. Mober, Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biol. Bull. 195(2), 136–144 (1998)
 575
 - 93. M. Schrope, Deep sea special: The undiscovered oceans. New Scientist **188**(2525), 36–576 43 (2005) 577
 - 94. R.B. Martin, D.B. Burr, N.A. Sharkey, Skeletal Tissue Mechanics (Springer, NY, 1998) 578 pp. 330–332 579
 - 95. K.J. Mach, B.B. Hale, M.W. Denny, D.V. Nelson, Death by small forces: a fracture and fatigue sanalysis of wave-swept macroalgae. J. Exp. Biol. 210(13), 2231–2243 (2007) 581
 - 96. M.A. Kasapi, J.M. Gosline, Design complexity and fracture control in the equine hoof wall. 582
 J. Exp. Biol. 200, 1639–1659 (1997) 583
 - 97. M.A. Kasapi, J.M. Gosline, Micromechanics of the equine hoof wall: optimizing crack control 584 and material stiffness through modulation of the properties of keratin. J. Exp. Biol. 202, 377– 585 391 (1999) 586
 - 98. U. Luettge, *Physiological Ecology of Tropical Plants* (Springer, Berlin, 2007)
 - L. Ambrosio, P.A. Netti, L. Nicolais, in *Integrated biomaterials science*, Ed. by R. Barbucci. 588 Tissues (Kluwer Academic Publishers, New York, 2002) p. 356
 589
 - 100. I.C. Gebeshuber, Biotribology inspires new technologies. Nano Today **2**(5), 30–37 (2007) 590
 - 101. P. Forbes, *The Gecko's Foot: Bio-Inspiration: Engineering New Materials from Nature* (W.W. 591 Norton & Company, New York, USA, 2006)
 592

564

I.C. Gebeshuber et al.

102. J.D. Smart, The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev.	593
57(11), 1556–1568 (2005)	594
103. JI. Azuma, NH. Kim, L. Heux, R. Vuong, H. Chanzy, The cellulose system in viscin from	595
mistletoe berries. Cellulose 7(1) 3-19 (2000)	596
104. A.J. Bowling, K.C. Vaughn, Gelatinous fibers are widespread in coiling tendrils and twining	597
vines. Am. J. Bot. 96, 719–727 (2009)	598
105. B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher,	599
G.D. Stucky, D.E. Morse, P.K. Hansma, Molecular mechanistic origin of the toughness of	600
natural adhesives, fibres and composites. Nature 399 , 761–763 (1999)	601
106. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry	602
for multifunctional coatings. Science 318 (5849), 426–430 (2007)	603
107. T.M. Dugdale, R. Dagastine, A. Chiovitti, P. Mulvaneyand, R. Wetherbee, Single adhesive	604
nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J.	605
89 (6), 4252–4260 (2005)	606
108. W.S. Pray, Head lice: perfectly adapted human predators. Am. J. Pharm. Edu. 63, 204–	607
209 (1999) 100 D.I.C. Like C.C.D.C. Leves Merchalters bisester such as a history of first	608
109. D.J.G. Lanr, S.G.B.C. Lopes, Morphology, biometry, ecology and biogeography of five	610
species of <i>Diffugia Lecterc</i> , 1813 (Arceniniaa: Diffuguade), from the River, Brazil. Acta	611
110 A M Stuart Alarm defense and construction behavior relationships in termites (Isontera)	612
Science 156 1123–1125 (1967)	613
111 P. Flammang, J. Ribesse, M. Jangoux, Biomechanics of adhesion in sea cucumber cuvierian	614
tubules (Echinodermata, Holothuroidea). Integ. Comp. Biol. 42 (6), 1107–1115 (2002)	615
112. D. Attenborough, The Private Life of Plants: A Natural History of Plant Behavior (BBC	616
Books, London, 1995) pp. 162–163	617
113. G.A. Doran, H. Baggett, The specialized lingual papillae of Tachyglossus aculeatus I. Gross	618
and light microscopic features. Anatom. Rec. 172(2), 157-165 (1971)	619
114. A. Wootton, Insects of the World (Blandford Press, Poole, 1984) p. 36	620
115. S. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, Dortrecht,	621
2001) pp. 56, 60–61	622
116. S.N. Gorb, R.G. Beutel, E.V. Gorb, Y. Jiao, V. Kastner, S. Niederegger, V.L. Popov, M.	623
Scherge, U. Schwarz, W. Votsch, Structural design and biomechanics of friction-based	624
releasable attachment devices in insects. Integ. Comp. Biol. 42 (6) 1127–1139 (2002)	625
117. W. Federle, K. Rohrseitz, B. Hölldobler, Attachment forces of ants measured with a	626
centrifuge: better 'wax-runners' have a poorer attachment to a smooth surface. J. Exp. Biol.	627
203 (3), 505–512 (2000)	628
118. E. Arzt, S. Gorb, K. Spolenak, From micro to nano contacts in biological attachment devices.	629
110 K. Automa V.A. Liang, S.T. Heich, W. Zeach, W.D. Chen, T.W. Kanny, D. Econing, D.I. Full	621
117. K. Autumini, I.A. Liang, S.I. Hsien, W. Zesch, W.F. Chan, I.W. Kenny, K. Fearing, K.J. Full, Adhesive force of a single gecko foot hair Nature 405 (6787) 681–685 (2000)	632
120 V Tian N Pesika H Zeng K Rosenberg R Zhao D McCuiggan K Autumn	632
120. 1. Tran, IV. Lesika, II. Zelig, K. Rosellocig, D. Zilao, F. McGuiggall, K. Autuillil, I. Israelachvili. Adhesion and friction in gecko toe attachment and detachment. Proc. Natl.	634
Acad Sci USA 103(51) 19320–19325 (2006)	635
	055

- 121. A. Parness, D. Soto, N. Esparza, N. Gravish, M. Wilkinson, K. Autumn, M. Cutkosky, A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, 637 directionality and long lifetime. J. Roy. Soc. Int/Roy. Soc. 6, 1223–1232 (2009)
- 122. J.M. Pawlicki, L.B. Pease, C.M. Pierce, T.P. Startz, Y. Zhang, A.M. Smith, The effect of 639 molluscan glue proteins on gel mechanics. J. Exp. Biol. 207, 1127-1135 (2004)
- 123. M. Hopkin, Flies get a grip. Nature 431(7010), 756–756 (2004)
- 124. M.G. Langer, J.P. Ruppersberg, S. Gorb, Adhesion forces measured at the level of a terminal 642 plate of the fly's seta. Proc. Roy. Soc. B: Biol. Sci. 271(1554), 2209-2215 (2004)
- 125. A.F.G. Dixon, P.C. Croghan, R.P. Gowing, The mechanism by which aphids adhere to smooth 644 surfaces. J. Exp. Biol. 152(1), 243-253 (1990)

- Editor's Proof
 - 3 Biomimetics in Tribology
 - 126. M. Crump, Headless Males Make Great Lovers and Other Unusual Natural Histories 646 (University of Chicago Press, Chicago, IL, USA, 2005) p. 53 647
 - 127. A.L. Ingram, A.R. Parker, The functional morphology and attachment mechanism of pandarid 648 adhesion pads (Crustacea: Copepoda: Pandaridae). Zoologischer Anzeiger J. Comp. Zool. 649 244(3–4), 209–221 (2006) 650
 - 128. M. Drack, L. Ector, L.C. Gebeshuber, R. Gordon, in *The Diatom World*, ed. by J. Seckbach, 651 J.P. Kociolek. A review of diatom gliding motility, with a new action potential theory for 652 its control and potential uses in open channel active nanofluidics (Springer, Dordrecht, The 653 Netherlands, 2009) in preparation 654
 - P.H. Tsang, G. Li, Y.V. Brun, L.B. Freund, J.X. Tang, Adhesion of single bacterial cells in the micronewton range. Proc. Natl. Acad. Sci. USA 103, 5764–5768 (2006)
 656
 - 130. D.F. Tees, D.J. Goetz, Leukocyte adhesion: an exquisite balance of hydrodynamic and 657 molecular forces. News Physiol. Sci. 18, 186–90 (2003)
 - C.E. Orsello, D.A. Lauffenburger, D.A. Hammer, Molecular perspectives in cell adhesion: a 659 physical and engineering perspective. Trends Biotechnol. 19, 310–316 (2001) 660
 - A.M. Smith, Alternation between attachment mechanisms by limpets in the field. J. Exp. 661 Marin. Biol. Ecol. 160(2) 205–220 (1992)
 662
 - 133. Y. Phang, N. Aldred, A.S. Clare, G.J. Vancso, Towards a nanomechanical basis for temporary 663 adhesion in barnacle cyprids (*Semibalanus balanoides*). J. Roy. Soc. Int/Roy. Soc. 5(21), 397–664 402 (2008)
 - 134. T. Eisner, For Love of Insects (The Belknap Press of Harvard University Press, Cambridge, 666 MA, USA, 2005) pp. 134–135
 - 135. K. Kamino, Novel barnacle underwater adhesive protein is a charged amino acid-rich protein 668 constituted by a Cys-rich repetitive sequence. Biochem. J. 356(2), 503–507 (2001) 669
 - 136. H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and 670 geckos. Nature 448, 338–341 (2007)
 - 137. S. Isnard, N.P. Rowe, The climbing habit in palms: Biomechanics of the cirrus and flagellum. 672
 Am. J. Bot. 95, 1538–1547 (2008)
 673
 - 138. I.C. Gebeshuber, B.Y. Majlis, New ways of scientific publishing and accessing human knowl edge inspired by transdisciplinary approaches. Trib. Surf. Mat. Int. (2010) arXiv:1001.1199, 675
 in press