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Chapter 3 1

Biomimetics in Tribology 2

I.C. Gebeshuber, H.A. Abdel-Aal, B.Y. Majlis, and H. Stachelberger 3

Abstract Science currently goes through a major change. Biology is evolving 4

as new Leitwissenschaft, with more and more causation and natural laws being 5

uncovered. The term ‘technoscience’ denotes the field where science and technology 6

are inseparably interconnected, the trend goes from papers to patents, and the 7

scientific ‘search for truth’ is increasingly replaced by search for applications with 8

a potential economic value. Biomimetics, i.e. knowledge transfer from biology to 9

technology, is a field that has the potential to drive major technical advances. The 10

biomimetic approach might change the research landscape and the engineering 11

culture dramatically, by the blending of disciplines. It might substantially support 12

successful mastering of current tribological challenges: friction, adhesion, lubri- 13

cation and wear in devices and systems from the meter to the nanometer scale. 14

A highly successful method in biomimectics, the biomimicry innovation method, is 15

applied in this chapter to identify nature’s best practices regarding two key issues 16

in tribology: maintenance of the physical integrity of a system, and permanent as 17

well as temporary attachment. The best practices identified comprise highly diverse 18

organisms and processes and are presented in a number of tables with detailed 19

references.
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As next step, detailed investigations on the relevant properties of the best 20

practices identified in this chapter shall be performed, and the underlying principles 21

shall be extracted. Such principles shall then be incorporated into devices, systems 22

and processes; and thereby yield biomimetic technology with increased tribological 23

performance. To accelerate scientific and technological breakthroughs, we should 24

aim at having a context of knowledge: the gap between scientific insights and 25

technological realization should be bridged. To prevent being trapped in the 26

inventor, innovator or investor gaps, a cross dialogue is necessary, a pipeline from 27

‘know-why’ to ‘know-how’ to ‘know-what’. This is specifically of relevance in 28

tribology, since tribological research is ultimately linked to real-world applications. 29

Applying biomimetics to tribology could provide such a pipeline. 30

3.1 Introduction: Historical Background and Current 31

Developments 32

Science currently goes through a major change: in biology, more and more causation 33

and natural laws are being uncovered [1]. Biology has changed during the recent 34

decades: it transformed from a rather descriptive field of research to a science that 35

can – in terms of concepts, basic ideas and approaches – be acknowledged and 36

understood by researchers coming from ‘hard sciences’ (such as physics, chemistry, 37

engineering and materials science) including tribologists (Fig. 3.1) [2]. Tribology 38

relies on experimental, empirical, quantifiable data or the scientific method, and 39

focuses on accuracy and objectivity [3, 4]. The amount of causal laws in this new 40

Fig. 3.1 The increasing amount of causal laws in biology generates promising areas of overlap
with tribology
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biology (indicated by the ratio of causal vs. descriptive knowledge) is steadily 41

growing and a new field that can be called ‘Biological Physics’ is emerging [1]. 42

The languages of the various fields of science increasingly get compatible, and the 43

amount of collaborations and joint research projects between researchers coming 44

from the ‘hard sciences’ and biologists have increased tremendously over the last 45

years. Still, there is a large gap between the natural sciences and humanities [5]. 46

The term ‘technoscience’ characterizes a field in which technology and science 47

are inseparably interconnected. This characteristic hybrid form is, for instance, 48

seen in the atomic force microscope – a symbol for both nanoscience and nan- 49

otechnology. This tool not only allows for basic scientific investigations, but also 50

for manipulation and engineering at very small scales. In technoscience, there 51

is no clear distinction between investigation and intervention. Even more, by 52

investigation already interventions may be made. Application-oriented biomimetics 53

can be denoted as ‘technoscience’. 54

Traditionally, engineers are interested in what works, i.e. what functions and 55

is useful, and are hence rather pragmatic, whereas scientists are interested in 56

explanations, hypotheses and theories that reflect a rather different stance. For 57

scientists, experiments are meant to try and prove or falsify a hypothesis or theory. 58

The practical aspects of experiments, i.e. the potential applicability, do not belong to 59

science but to technology. ‘While traditional conceptions of science foreground the 60

formulation and testing of theories and hypotheses, technoscience is characterized 61

by a qualitative approach that aims to acquire new competencies of action and 62

intervention’ [6]. Of course, also pure scientific theories are a basis or prerequisite 63

for technology, but it is not necessary to have an application in mind before a 64

scientific investigation, which is a characteristic of the field of technical biology [7]. 65

Living nature is seen from an engineering viewpoint, or even nature itself is thought 66

of as an ‘engineer’ who is facing technical problems. 67

In biomimetics, materials, processes and systems in nature are analyzed; the 68

underlying principles are extracted and subsequently applied to science and tech- 69

nology [7–10]. Biomimetics is a growing field that has the potential to drive major 70

technical advances [1, 11, 12]. It might substantially support successful mastering 71

of current tribological challenges. The biomimetic approach can result in innovative 72

new technological constructions, processes and developments [7]. Biomimetics can 73

aid tribologists to manage the specific requirements in systems or product design, to 74

integrate new functions, to reduce production costs, to save energy, to cut material 75

costs, to redefine and eliminate ‘waste’, to heighten existing product categories, to 76

define new product categories and industries, to drive revenue and to build unique 77

brands [13, 14]. 78

Gebeshuber and Drack [7] distinguished two methods of biomimetics: biomimet- 79

ics by analogy and biomimetics by induction, to which the different activities in 80

the field can be assigned. Biomimetics by analogy starts with a problem from 81

technology and tries to find analogous problems in nature with the respective 82

solutions that might also be useful in the technology. Biomimetics by induction 83

refers to ideas that stem from basic science approaches in biology, with no intention 84

for applications as a motivation in the first place. 85
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Biology and Tribology
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Fig. 3.2 The number of scientific publications in the years 2001–2008 with explicit relation
between biology and tribology
Source: ISI Web of Knowledge, Thomson Reuters, Citation Databases: SCI-EXPANDED (2001-
present), CPCI-S (2004-present). http://www.isiknowledge.com, (accessed 5 May 2010)

Biomimetics is yet another example for the increasing dissolution of disciplines 86

that are found in science, together with the development of highly specialized 87

domains. Interdisciplinary work with a specific focus (e.g. the functional design 88

of interacting surfaces by means of nanotechnology) requires input from more than 89

one classical discipline (in this example: physics, chemistry, biology, mechanical 90

engineering, electronics and tribology). Recurrent concepts in biomimetics can 91

easily be transferred to technology [1, 7, 8]. 92

The amount of scientific papers that link biology to tribology is increasing (see 93

Fig. 3.2). However, there is still a large unexplored body of knowledge that deals 94

with lubrication and wear in biology but that has not yet been linked extensively to 95

technology (Fig. 3.3). 96

3.2 Biology for Engineers 97

Engineers may not be primarily interested in evolution or taxonomy. Yet, basic 98

knowledge about typical reactions of biological organisms or groups of organisms 99

to conditions imposed by natural and human activities might prove beneficial for 100

their work. Biology for engineers should be principle-based, viewed as a system 101

http://www.isiknowledge.com
ille
Highlight
10
(it should be 2010)

ille
Highlight
at the right bar, the year 2010 disappeared - please add! thanks



UNCORRECTED
PROOF

3 Biomimetics in Tribology 29

wear and Adhesives in Biology
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Fig. 3.3 The number of scientific publications in the years 2000–2008 dealing with either wear or
adhesives in biology comprise a huge yet unexplored amount of inspiration for technology
Source: ISI Web of Knowledge, Thomson Reuters, Citation Databases: SCI-EXPANDED (2001-
present), CPCI-S (2004-present). http://www.isiknowledge.com, (accessed 5 May 2010)

and might lead to predictive expectations about typical behavioural responses [15, 102

Table 3.1]. 103

Recurring principles of biology are correlation of form and function, modularity 104

and incremental change, genetic basis, competition and selection, hierarchy and 105

multi-functionality [16, 17]. 106

General principles that can be applied by engineers who are not at all involved in 107

biology have been distilled [18]. These basic principles comprise integration instead 108

of additive construction, optimization of the whole instead of maximization of a 109

single component feature, multi-functionality instead of mono-functionality, energy 110

efficiency and development via trial-and-error processes. Systematic technology 111

transfer from biology to engineering thereby becomes generally accessible. 112

Knowledge about the responses of biological systems may lead to useful products 113

and processes, might increase the ability of engineers to transform information 114

from familiar systems to unfamiliar ones and might help to avoid unintended 115

consequences of emerging technologies. 116

Nachtigall promoted analogy search and states that the nature of qualitative 117

analogy research is an impartial, open-minded comparison. He presents numerous 118

examples of insect micromorphology and relates functional mechanisms to techno- 119

logical examples in a visual comparison [19]. 120

In biomimicry, nature is seen as model and mentor (and measure for sustain- 121

ability). Models in nature are studied, and forms, processes, systems and strategies 122

are emulated to solve human problems – sustainably. Biomimicry is a new way of 123

viewing and valuing nature. It introduces an era based not only on what we can 124

http://www.isiknowledge.com
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Table 3.1 Possible extrapolation of biological responses to technical systems

t1.1Biological responses [15] Possible extrapolation to technical systems

t1.2Organisms die without water, nutrients, heat
sources and sinks and the right amount of
oxygen Proper energy management

t1.3Organisms become ill in the presence of wastes Proper waste management
t1.4

Organisms modify their environments
Consider two way interaction of device with

environment
t1.5Extra energy will be spent on adaptations Rather adapt than completely change
t1.6Organisms, if possible, will move to friendlier

environments Choose promising niches
t1.7Organisms will evolve under environmental

pressures Reactive responsive adaptive devices
t1.8

Crowding of organisms produces stress
Information management in an era of

over-information
t1.9Organisms are affected by chemical and

mechanical stresses Reactive devices
t1.10Optimization is used to save energy and nutrient Resourcefulness
t1.11Organisms alter themselves to protect against

harsh environments Adaptive devices
t1.12

Organisms cooperate with other organisms
Sharing of data and results with other

devices in the same system
t1.13

Organisms compete with other organisms
Input from other devices is used to improve

respective device
t1.14Organisms reproduce Develop self-replicating devices
t1.15Organisms coordinate activity through

communication
Communication of devices with each other

to eliminate abundances
t1.16Organisms maintain stability with exquisite

control
Feedback mechanisms inside the devices and

within the system
t1.17

Organisms go through natural cycles
Emerging technologies go through circles

from primitive to complex to simple
t1.18Organisms need emotional satisfaction and

intellectual stimulation
Technology should be helpful, and not a

burden (cf. openability issues)
t1.19Organisms die Develop materials with expiration date

extract from the natural world, but also on what we can learn from it [20], for 125

example related to developing better brakes. Not only in 1771 this was an issue 126

(see Fig. 3.4), optimizing brakes is still important today. 127

3.3 Method: The Biomimicry Innovation Method 128

The biomimicry innovation method (BIM, [21]) is a successful method in 129

biomimetics. This method is applied here to identify biological systems, processes 130

and materials that can inspire tribology. Biomimicry is an innovation method that 131
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Fig. 3.4 1771 crash of Nicolas Joseph Cugnot’s steam-powered car into a stonewall. Cugnot was
the inventor of the very first self-propelled road vehicle, and in fact he was also the first person to
get into a motor vehicle accident

seeks sustainable solutions by emulating nature’s time-tested patterns and strategies. 132

The goal is to create products, processes and policies – new ways of living – that 133

are well adapted to life on earth over the long haul. 134

The steps in BIM are as follows: Identify function, biologize the question, find 135

nature’s best practices and generate product ideas. 136

Identify Function: The biologists distil challenges posed by engineers/natural 137

scientists/architects and/or designers to their functional essence. 138

Biologize the Question: In the next step, these functions are translated into 139

biological questions such as ‘How does nature manage lubrication?’ or ‘How does 140

nature bond parts together?’ The basic question is ‘What would nature do here?’ 141

Find Nature’s Best practices: Scientific databases as well as living nature itself 142

are used to obtain a compendium of how plants, animals and ecosystems solve the 143

specific challenge. 144

Generate Process/Product Ideas: From these best practices, the biologists gen- 145

erate ideas for cost-effective, innovative, life-friendly and sustainable products and 146

processes. 147

The BIM proves highly useful in habitats with high species variety and therefore 148

high innovation potential (e.g. in the tropical rainforests or in corral reefs), 149

providing a multitude of natural models to learn from and emulate. According to 150

the experience of the US based Biomimicry Guild, about 90% of the generated 151

process/product ideas are usually new to their clients (who include companies such 152

as Boeing, Colgate–Palmolive, General Electric, Levi’s, NASA, Nike and Procter 153

and Gamble). 154

There is an abundance of biological literature available. However, only a few 155

of these works concentrate on the functions of biological materials, processes, 156

organisms and systems [19, 22–27]. The Biomimicry Guild is currently undergoing 157

a major endeavour and collects on its web-page http://www.asknature.org ‘strategies 158

of nature’ together with scientific references and envisaged and already existing 159

http://www.asknature.org
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bioinspired applications in industry. The 1,245 strategies (status 5 May 2009) are 160

grouped in 8 major sections and comprise answers to the questions 161

How does nature break down? 162

How does nature get, store or distribute resources? 163

How does nature maintain community? 164

How does nature maintain physical integrity? 165

How does nature make? 166

How does nature modify? 167

How does nature move or stay put? 168

How does nature process information? 169

Strategies in ‘How does nature maintain community?’ of relevance regarding 170

tribology are concerned with maintenance of physical integrity, management of 171

structural forces and prevention of structural failure (Table 3.2). Strategies in 172

‘How does nature move or stay put?’ with most relevance regarding tribology 173

are concerned with attachment (Table 3.2). The results section below presents the 174

outcome of a thorough screening of these strategies and subsequent clustering and 175

further analysis of especially promising ones regarding tribology. 176

3.4 Results: Biomimetics in Tribology – Best Practices 177

and Possible Applications 178

Application of the BIM concerning wear, shear, tension, buckling, fatigue, fracture 179

(rupture), deformation and permanent or temporal adhesion yields a variety of best 180

practices that comprise biological materials and processes in organisms as diverse 181

as kelp, banana leafs, rattan, diatoms and giraffes (Tables 3.3–3.9). 182

Table 3.2 Structure of the strategies on AskNature.org relevant for tribology used in this work

t2.1Major category Category Sub category

t2.2Maintain physical integrity (799) Manage structural forces (289) Mechanical wear (30)
t2.3Shear (16)
t2.4Tension (28)
t2.5Prevent structural failures (52) Buckling (14)
t2.6Deformation (4)
t2.7Fatigue (4)
t2.8Fracture (rupture) (30)
t2.9Move or stay put (43) Attach (102) Permanently (41)
t2.10Temporarily (61)

The numbers indicate the total amount of strategies in the respective categories (status 5
May 2010).
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Table 3.3 Application of the biomimicry innovation method regarding mechanical wear

Biologized
question: How
does nature : : : Nature’s best practice Generated process/product ideas

t3.1: : : build flexible
anchors?

Anchor has flexibility: bull kelp [34] Bioinspired wave and tidal power
systems [35]

t3.2
: : : lubricate fast

moving parts?

Chameleon tongues move with an
acceleration of 50 g and are
lubricated [36, p. 70]

Lubrication in
bionanotechnological devices,
fast actuators

t3.3: : : protect seeds
from wear?

Seed coat: lotus (Nelumbo nucifera)
[37] Packaging

t3.4: : : protects trees
from damage?

Resin protects damage: conifer trees
[38] Packaging

t3.5
: : : lubricate joints?

Coefficient of friction in hip joints:
0.001 [39–41] Technical joints, hip implants

t3.6: : : prevent wear in
abrasive
conditions?

Skin exhibits low friction: sandfish
skink [42]; optimized
tribosystem: snake skin [43–45]

Abrasive cutting cools, adaptation
in plateau honed surfaces [46]

t3.7: : : maintain
sharpness of
teeth?

Teeth are self-sharpening: American
beaver [47], sea urchins [48]

Self-sharpening tools, abrasive
cutting cools, self-sharpening
hand and power saws [49]

t3.8: : : maintain low
friction in
nanoscale parts
in relative
motion?

Moving parts are lubricated:
diatoms [50] 3D-MEMS [51]

t3.9

: : : protect soft
matter against
wear?

The skin of cartilaginous fish
(Elasmobranchii) is protected by
a covering of abrasive placoid
scales, called denticles [52,
p. 91]; Skin and mucus prevent
abrasion: blennies [53].

Self-sharpening tools, abrasive
cutting cools, industrial-
grade sanders

t3.10

: : : protect bodies
from dirt
particles?

The body and eyes of stonefly larvae
(Capniidae) are protected from
sediment particles by a coating
of dense hairs and bristles [54,
p. 115].

Surface layer of devices that come
in contact with abrasive
particles

t3.11

: : : control wear of
teeth?

Long-lived grazers with a
side-by-side layered arrangement
of enamel, dentine and cement
[25, p. 333] Agricultural tools

t3.12

: : : protect skin
when burrowing?

Webbed feet of the platypus
(Ornithorhynchus anatinus) are
used for burrowing by folding
back the webbing to expose the
claws for work [55]

Protect equipment from damage,
or from damaging something it
comes into contact with when
not in use. Gloves

t3.13: : : protect folded
structures from
wear? Insect wings [56]

Packaging, manufacturing,
transport

t3.14: : : protect soft
structures from
thorns?

Leathery tongue (Giraffa
camelopardalis) [57, p. 61]

Soft but durable packaging
replacing hard plastics

Possible application scenarios are presented in the third column of this table.
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Table 3.4 Application of the biomimicry innovation method regarding shear

Biologized question:
How does nature : : : Nature’s best practice

Generated process/
product ideas

t4.1

: : : reinforce materials?

Spiral fibres strengthen tree trunks [59,
pp.28–29]: pine; circular, tapering
beams stabilize: plants [60]; Nature
achieves high flexural and torsional
stiffness in support structures, with
minimum material use, by using
hollow cylinders as struts and beams
[25, p. 440]. Tough materials

t4.2

: : : prevent structures
from breaking?

Stretchable architecture resists breakage:
bull kelp [61]; joint shaped as suction
cup prevents peeling: bull kelp [25,
p. 425], Variable postures aid intertidal
zone survival: sea palm [25, p. 435] Tough materials

t4.3
: : : build lightweight?

Lightweighting: Scots pine [62]; Bones
are lightweight yet strong: birds [63]

Lightweight structures
and materials

t4.4

: : : resist shear?

Insect elytra resist shear and cracking:
beetles [64]; tissues resist bending
under stress: giant green anemone
[65]; pulled support stalks have low
flow stress: algae [25, p. 437; 66];
Leaves resist bending: trees, p. 580];
Many organisms, including limpets,
resist shearing loads temporarily in
part thanks to Stefan adhesion, which
occurs when a thin layer of viscous
liquid separates two surfaces [25,
p. 427]. Shear resistant materials

Multifunctionality is a key property in biological entities. Therefore, many organ- 183

isms and strategies are relevant for more than one tribological issue and therefore 184

also appear in more than just one of the tables given below. 185

The inspiring organisms, ecosystems and natural structures and functions lay a 186

sound foundation to proceed to the next step: detailed experimental investigation of 187

the phenomena of interest. Further analysis concerning the rich flora in Southeast 188

Asia by one of the authors (ICG) might provide further useful input concerning 189

novel approaches regarding tribology. Valuable literature in this regard is available 190

in abundance [e.g. 28–30] and personal presence in Malaysia with direct contact to 191

devoted naturalists such as H.S. Barlow with his 96 acres Genting Tea Estate where 192

he plants rare species and provides perfect environment for his objects of study 193

prove highly beneficial for biomimetics work. 194

Increasing awareness about the innovation potential of the rainforest might also 195

hopefully cause a paradigm shift in the way locals view the pristine forests. With 196

the fast pace people are currently cutting down pristine tropical forests (e.g. in 197

Asia or Brazil) and the subsequent extinction of a multitude of species, many of 198

which are even not yet known to the public, many inspiring plants and animals 199
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Table 3.5 Application of the biomimicry innovation method regarding tension

Nature’s best practice
Generated process/
product ideas

t5.1Stretchable architecture resists breakage: bull kelp [61];
Stretching mechanism prevents fracture: blue mussel [67];
Two-phase composite tissues handle tension: pipevine [68];
Membranes get fatter when stretched: cells [69]; Arterial
walls resist stretch disproportionately: cephalopods [25,
pp. 7–8]; Stretchable materials

t5.2After too much tension is applied: Bones self-heal: vertebrates
[70]; Diatom adhesives self-heal [71]

Self-healing materials;
Self-healing coatings [72]

t5.3Walls prevent collapse under tension: plants [73]; Fluid
pressure provides support: blue crab [74]; Pressure provides
structural support: blackback land crab [74]

Reinforcement of foldable
structures

t5.4Pulled support stalks have low flow stress: algae [25, p. 437;
66] Construction

t5.5Intricate silica architecture ensures mechanical stability under
high tension: diatoms [75–77] MEMS

t5.6Crystals and fibres provide strength, flexibility: bones [78];
Byssus threads resist hydrodynamic forces [79]; Silk used
for various functions: spiders [80]; Teeth resist compression
and tension: animals that chew [25, pp. 332–333]; Elastic
ligament provides support, shock absorption: large grazing
mammals [25, p. 304] Tough materials

t5.7Circular, tapering beams stabilize: plants [60]; Buttressing
resists uprooting: English oak [25, pp. 431–432]; Resisting
shearing forces: limpets [25, p. 427]; Variable postures aid
intertidal zone survival: sea palm [25, p. 435]; Leaves resist
gravitational loading: broad-leaved trees [25, p. 375];
Tentacles maintain tension as flow increases: marine
polychaete worm [81] Stabilize materials

t5.8Curved spine deals with tension: sloth [52, p. 37]; Low-energy
perching: mousebird [82, pp. 240–241] Tension resistant materials

are lost forever, before we even have started to value them. Gebeshuber and co- 200

workers have recently proposed a niche tourism concept for Malaysia and Thailand, 201

where corporate tourists and local bioscouts practice biomimetics in rainforests, 202

coastal and marine environments and thereby provide sustainable usage of pristine 203

tropical environment, increased income and employment in the host countries while 204

encouraging conservation and sustainable tourism development [31, 32]. 205

3.4.1 Application of the Biomimicry Innovation Method 206

Concerning Mechanical Wear 207

Wear concerns the erosion of material from a solid surface by the action of 208

another surface. It is related to surface interactions and more specifically the 209

removal of material from a surface as a result of mechanical action. The need for 210
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Table 3.6 Application of the BIM regarding buckling, fatigue and fracture (rupture)

Function
Biologized question:
How does nature : : : Nature’s best practice

Generated process/
product ideas

t6.1

Buckling

Stems resist buckling: bamboo and other plants [83,
25, p. 378]; Quills resist buckling: porcupine [84];
Siliceous skeleton provides support: Venus flower
basket [85]; Shape of feather shafts protect from
wind: birds [25, p. 385]; Crystals and fibres
provide strength, flexibility: bones [59, p. 32–33;
78]; Organic cases provide protection: bagworm
moths [86]; Bones absorb compression shock:
birds [52, p. 39]; Leaves resist bending: trees [25,
p. 580]; Skeleton provides support: sponges [25,
p. 439]; Flexural, torsional stiffness with minimal
material use: organisms [25, p. 440]; Spines work
as shock absorbers: West European hedgehog [87];
Stems vary stiffness: scouring horsetail [88]

Bioinspired buckling
resistant scaffolds

t6.2

Fatigue

Plants survive repeated drying and rehydration: lesser
clubmoss [89]; Wood resists fracture: trees [25,
p. 343]; Pulled support stalks have low flow stress:
algae [25, p. 437; 66]; Thin ‘shells’ resist impact
loading: sea urchins [25, p. 388; 90–92]; Wings
fold multiple times without wear: beetles [56]

Bioinspired fatigue
resistant materials

t6.3

Fracture
(rupture)

Bones self-heal: vertebrates [70]; Iron sulphide
minerals reinforce scales: golden scale snail [93];
Insect elytra resist shear and cracking: beetles [64];
Tendons and bones form seamless attachment:
Chordates [94]; Leaves resist tearing: brown algae
[59, pp. 35–36]; Microscopic holes deter fractures:
starfish [25, p. 338–339]; Spicules help resist
fractures: sponges [25, p. 337]; Extensibility helps
stop spread of cracks: macroalgae [25, p. 338; 34,
95]; Shell resists cracking: scallop [25,
pp. 339–340]; Leaves resist crosswise tearing:
grasses [25, p. 340]; Antlers resist fracture:
mammals [25, p. 349]; Resin protects damage:
conifer trees [38]; Crystals and fibres provide
strength, flexibility: bones [78]; Arterial walls
resist stretch disproportionately: cephalopods [25,
pp. 7–8]; Hooves resist cracking: horse [96, 97];
Continuous fibres prevent structural weakness:
trees [98]; Ctenoid scales form protective layer:
bony fish [52, p. 86]; Leaves resist bending: trees
[25, p. 580]; Flexural, torsional stiffness with
minimal material use: organisms [25, p. 440].

Bioinspired fracture
resistant materials

mechanical action, in the form of contact due to relative motion, is an important 211

distinction between mechanical wear and other processes with similar outcomes 212

(e.g. chemical corrosion) [33]. Table 3.3 summarizes the application of the BIM 213

regarding mechanical wear. 214
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Table 3.7 Application of the BIM regarding deformation

Biologized question:
How does nature : : : Nature’s best practice

Generated process/product
ideas

t7.1
: : : manage changes in

humidity?

Plants survive repeated drying and
rehydration: lesser clubmoss
[10, p. 476] Humidity resistant materials

t7.2

: : : build stable
scaffolds?

Crystals and fibres provide
strength, flexibility: bones [59,
pp. 32–33; 78]; Venus blower
basket [85]

Scaffold in tissue
engineering

t7.3
: : : protect soft parts

against deformation?

Skin properties derive from
arrangement of components:
mammals [99]

Mechanical protection
(e.g. food
packaging)

t7.4: : : provide mechanical
stability?

Thin ‘shells’ resist impact loading:
sea urchins [25, p. 388; 90–92] Hard coated materials

Table 3.8 Application of the BIM regarding permanent attachment

t8.1Generated process/
t8.2Function Nature’s best practice product ideas

t8.3

Permanent adhesion via
mechanical
attachment Diatom chains [13, 50, 71, 76]

Hinges and interlocking
devices in
micromachinery
produced via rapid
prototyping

t8.4
Permanent adhesion via

wet adhesives

Sticky proteins serve as glue:
mammals [102]; Tendons and
bones form seamless attachment
[63, 78]; Anchor has flexibility:
bull kelp [34]; Leaves glued
together: grass trees [102]; Mucus
glues sand and rock: marine
worms [52, pp. 32–33]; Sticky
proteins serve as glue: blue mussel
[67]; Sticky berries adhere:
European mistletoe [103]; Tendrils
stick to various surfaces: Virginia
creeper [104]; abalone shells [105]

Novel adhesives that can be
produced in ambient
conditions [106]

t8.5

Permanent adhesion
underwater via wet
adhesives Benthic diatoms [50, 71, 107]

Chemically stable
underwater adhesives

t8.6
Permanent adhesion via

cement-like material

Eggs attached securely to hairs with a
cement like substance: body lice
[108]; Durable casing built with
sand: protozoan’s [109]; Termite
faecal cement [110]

Cement produced at
ambient conditions

t8.7

Permanent adhesion via
fluid substances that
harden in air or
water

Adhesive glues prey: velvet worms
[36, p. 78]; Saliva used as glue:
swifts [82, p. 239]; Threads adhere
underwater: sea cucumber [111]

Novel two component
adhesives
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The lubrication strategies applied in chameleon tongues could for example 215

be investigated regarding lubrication in bionanotechnological devices and fast 216

actuators. 217

‘The chameleon’s tongue moves at ballistic speeds – the acceleration reaches 50 g – five 218
times more than an F16 fighter jet. The burst of speed is produced by spiral muscles in the 219
tongue, which contract width-wise to make them stretch forward. A lubricant allows the 220
muscles to slide at time-slicing speeds.’ [36, p. 70]. 221

At the core of a chameleon’s tongue is a cylindrical tongue skeleton surrounded 222

by the accelerator muscle. High-speed recordings of Chamaeleo melleri and 223

C. pardalis reveal that peak powers of 3,000 W/kg are necessary to generate the 224

observed accelerations. The key structure in the projection mechanism is probably 225

a cylindrical connective-tissue layer, which surrounds the entoglossal process and 226

acts as lubricating tissue. Thus, the chameleon utilizes a unique catapult mechanism 227

that is very different from standard engineering designs [58]. Industrial sectors 228

interested in this strategy could be manufacturing, food and medicine; possible 229

application ideas comprise bio-friendly lubrication for use in industry and actuators 230

that lengthen quickly. 231

3.4.2 Application of the Biomimicry Innovation Method 232

Concerning Shear 233

Shear concerns a deformation of an object in which parallel planes remain parallel 234

but are shifted in a direction parallel to themselves. In many man-made materials, 235

such as metals or plastics, or in granular materials, such as sand or soils, the shearing 236

motion rapidly localizes into a narrow band known as a shear band. In that case, all 237

the sliding occurs within the band, while the blocks of material on either side of the 238

band simply slide past one another without internal deformation. A special case of 239

shear localization occurs in brittle materials when they fracture along a narrow band. 240

Then, all subsequent shearing occurs within the fracture. Table 3.4 summarizes the 241

application of the BIM regarding shear. 242

3.4.3 Application of the Biomimicry Innovation Method 243

Concerning Tension 244

Tension is the magnitude of the pulling force exerted by a string, cable, chain or 245

similar object on another object. It is the opposite of compression. Tension is a 246

force and is always measured parallel to the string on which it is applied. Table 3.5 247

summarizes the application of the BIM regarding tension. 248
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3.4.4 Application of the Biomimicry Innovation Method 249

Concerning Buckling, Fatigue, Fracture (Rupture) 250

and Deformation 251

Buckling, fatigue, fracture (rupture) and deformation are well-known phenomena; 252

their specific meaning in tribology is summarized below. Buckling is a failure 253

mode characterized by a sudden failure of a structural member subjected to high 254

compressive stresses, where the actual compressive stress at the point of failure 255

is less than the ultimate compressive stresses that the material is capable of 256

withstanding. This mode of failure is also described as failure due to elastic insta- 257

bility. Mathematical analysis of buckling makes use of an axial load eccentricity 258

that introduces a moment, which does not form part of the primary forces to 259

which the member is subjected. Fatigue is the progressive and localized structural 260

damage that occurs when a material is subjected to cyclic loading. The maximum 261

stress values are less than the ultimate tensile stress limit, and may be below 262

the yield stress limit of the material. Fracture mechanics is an important tool in 263

improving the mechanical performance of materials and components. It applies the 264

physics of stress and strain, in particular the theories of elasticity and plasticity, 265

to the microscopic crystallographic defects found in real materials to predict the 266

macroscopic mechanical failure of bodies. Rupture or ductile rupture describes the 267

ultimate failure of tough ductile materials loaded in tension. Rupture describes a 268

failure mode in which, rather than cracking, the material ‘pulls apart’, generally 269

leaving a rough surface. Deformation denotes a change in the shape or size of an 270

object due to an applied force. Tables 3.6 and 3.7 summarize the application of 271

the BIM regarding buckling, fatigue and fracture (rupture); and deformation. The 272

biologized question ‘How does nature manage changes in humidity?’ (Table 3.7, 273

top) is a question resulting from reverse engineering, because we already know that 274

shape change in nature is often initiated by changes in humidity. 275

3.4.5 Application of the Biomimicry Innovation Method 276

Concerning Attachment 277

To stay put is important for many organisms; a plenitude of different methods for 278

mechanical attachment or chemical bonding had been evolved. In this book chapter, 279

mechanisms to stay put are divided in to mechanisms for permanent and temporary 280

attachment. 281

Permanent adhesion can occur via mechanical attachment. One intriguing exam- 282

ple for this on the small scale is diatom chains with hinges and interlocking devices 283

that are just some hundreds of nanometers large and that connect the single celled 284

organisms to chains. Some of these connections (still functional) can be found in 285

fossils of diatoms that lived tens of millions of years ago [100]. Most man-made 286

adhesives fail in wet conditions, owing to chemical modification of the adhesive or 287
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its substrate. Therefore, bioinspiration from natural underwater adhesives is very 288

much in need. The adhesive that Eunotia sudetica, a benthic freshwater diatom 289

species, produces to attach itself to a substrate has for example modular, self- 290

healing properties [50]. Another class of adhesives comprises cement-like materials 291

and adhesives that dry in air. Dry adhesives as they occur in the gecko have been 292

thoroughly investigated, and currently first man-made bioinspired gecko adhesives 293

are produced [101]. Tables 3.8 and 3.9 summarize the application of the BIM 294

regarding permanent and temporary attachment, respectively. In Table 3.9, the 295

mechanical attachment devices for the temporal attachment are structured according 296

to their size (millimetres and above, micrometres and nanometres) – this should help 297

prevent problems with any scaling effect when doing the technology transfer from 298

biology to technology. 299

Climbing palms, such as the highly specialized rattan palms in the Southeast 300

Asian rainforests, evolved leaves armed with hooks and grapnels for climbing 301

(Fig. 3.5). Some species of rattan palms develop a climbing organ known as 302

the flagellum, which also bears hooks. The leaves are constructed to optimize 303

bending and torsion in relation to the deployment of re-curved hooks. It is a joint 304

phenomenon that hooks in organisms increase in strength toward their base, and 305

that the hooks always fail in strength tests before the part of the organism they 306

are attached to. The sizes and strengths of the hooks differ between species and 307

are related to body size and ecological preference. Larger species produce larger 308

hooks, but smaller climbing palms of the understory deploy fine sharp hooks that 309

are effective on small diameter supports as well as on large branches and trunks. 310

Climbing organs in palms differ significantly from many vines and lianas having 311

more perennial modes of attachment [137]. 312

Fig. 3.5 Details of the climbing palm rattan. The hooks protect the plant against predators and
assist in climbing and growing through the understory in the tropical rain forests. Image reproduced
with permission, c� F. Saad, IPGM, Malaysia
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‘The front tip, from which all growth comes, explores with extremely long, thin tendrils 313
equipped along their length with needle-sharp curved hooks. If these snag your arm – and 314
the tendrils are so thin that they can easily be overlooked – they can rip both your shirt and 315
your flesh. With these, it hitches itself on to an established tree and actively grows upwards. 316
Sometimes the support is not strong enough to bear the extra load and it collapses, but the 317
rattan is not deterred. It continues to grow as it sprawls across the forest floor and does so 318
with such vigour that some species develop longer stems than any other plant and may reach 319
a length of over five hundred feet.’ [57, pp. 162–163] 320

Bioinspired products and application ideas comprise fasteners, clips, snaps, slide 321

fastener tapes and a novel Velcro analogue (possibly noiseless!) with no need for a 322

counterpart. 323

3.5 Summary and Outlook 324

This chapter presented a multitude of best practices from nature concerning melio- 325

rated technological approaches of various tribological issues. As next step, detailed 326

investigations on the relevant properties of the best practices shall be performed, 327

and the underlying principles shall be extracted. Such principles shall then be 328

incorporated into devices, systems and processes and thereby yield biomimetic 329

technology with increased tribological performance. 330

To accelerate scientific and technological breakthroughs, we should aim at 331

having a context of knowledge: the gap between scientific insights and technological 332

realization should be bridged [138]. Especially in a field which is as application- 333

oriented as biomimetics related to tribology, care has to be taken that the scientific 334

findings actually can lead to real-world applications. As Gebeshuber and co-workers 335

outlined in 2009 [1] in their ‘three gaps theory’, there are gaps between inventors, 336

innovators and investors (see Fig. 3.6). ‘Inventor gap’ denotes the gap between 337

Fig. 3.6 The three gaps theory regarding inventors, innovators and investors. c�2009 PEP
Publishing, London. Reproduced from [1] with permission
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knowing and not knowing that has to be overcome to have ideas. The ‘innovator 338

gap’ denotes the gap between knowledge and application of the knowledge. The 339

‘investor gap’ denotes the gap between the application and the creation of the 340

product. To prevent being trapped in the inventor, innovator or investor gap, a cross 341

dialogue is necessary, a pipeline from ‘know-why’ to ‘know-how’ to ‘know-what’, 342

from the inventor who suggests a scientific or technological breakthrough to the 343

innovator who builds the prototype to the investor who mass produces the product 344

and brings the product to the consumer. Currently, and this is a major problem, at 345

universities worldwide huge amounts of knowledge are piled up with little or no 346

further usage. We know a lot, we can do relatively little. We need a joint language 347

and a joint vision. This is specifically of relevance in tribology, since tribological 348

research is ultimately linked to real-world applications. Applying biomimetics to 349

tribology could provide such a pipeline. 350

On the basis of the long-standing experience of research at the interface between 351

tribology and biology [e.g. 2, 8, 12, 13, 14, 100], Gebeshuber and co-workers 352

recently introduced a concept for a dynamic new way of scientific publishing and 353

accessing human knowledge [138]. The authors propose a solution to the dilemma 354

that a plenitude of biology papers that deal with friction, adhesion, wear and 355

lubrication were written solely for a biology readership and have high potential 356

to serve as inspiration for tribology if they were available in a language or in an 357

environment accessible for tribologists (cf. Figs. 3.2 and 3.3). The British publishing 358

house Professional Engineering Publishing will host the first scientific journal that 359

aims at turning the dynamic publishing concept into reality. The editor of this 360

new journal, who is one of the authors of this chapter, ICG, will thereby get the 361

chance to possibly revolutionize the way we are doing science, and contribute to 362

overcoming the gaps between inventor, innovator and investor, by presenting and 363

managing research results in a way that is accessible by people with different kinds 364

of backgrounds and levels of education. 365
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